
Benny, a sixth grader whose teacher regards him as
one of her best pupils, is interviewed by a classroom visi-
tor (Erlwanger, 1973). The interviewer probes his
knowledge of decimals:

Interviewer: What would you get if you add .3 + .4?

Benny: That would be… oh, seven [07]… point oh
seven [.07].

Interviewer: How do you decide where to put the point?

Benny: Because there’s two points: at the front of
the 4 and the front of the 3. So you have to have two
numbers after the decimal, because… you know… two
decimals. Now like if I had .44, .44 (i.e., .44 + .44), I have
to have four numbers after the decimal (i.e., .0088). (p. 4) 

He does the same thing when he multiplies decimals.
Interviewer: What about .7 � .5?

Benny: That would be .35.
Interviewer: And how do you decide on the point?

Benny: Because there’s two points, one in front
of each number; so you have to add both of the numbers
left… 1 and 1 is 2; so there has to be two numbers left
for the decimal. (p. 5) 

Using these methods, Benny produces such answers as
4 + 1.6 = 2.0 and 7.48 – 7 = 7.41 and yet is unaware that
his answers are wrong. Because Benny knows that num-
bers can be represented in different ways, if his answer is
different from the teacher’s answer or from the answer in
the answer key, he simply assumes that his answer is just
another way to write the correct one. “It’s like a wild
goose chase,” he explains emotionally . Mathematics is
anything but reasonable for Benny. His experience and
the conclusions he draws about mathematics are also not
uncommon. Contrast his experience in school with that
of the children in the following excerpt from Deborah

Ball’s third-grade class (transcript of class, 19 January
1990). In this example, all names are pseudonyms, stan-
dardized across published analyses of these data and se-
lected to be culturally similar to the children’s real
names. Near the end of a class, the children are conclud-
ing a discussion with their teacher: 

Riba: (to the class) So Sean is saying that some
even numbers, in a pattern, can be even and odd, and
some can’t. Four can’t, because it’s two groups. Six can.
Eight can’t. Ten can. (Pointing at the number line above the
chalkboard, she uses a pointer to mark off consecutive even
numbers.) Can’t. Can. Can’t. Can….

Ofala: Well, I just think that just because twenty-
two is eleven groups, that doesn’t mean it’s an odd num-
ber. My conjecture, I think it’s always true, is that if all
twos are circled in a number, then it’s an even number.

Sean: What conjecture?

Ball: Ofala, tell him what you’re talking about
when you talk about your conjecture. He’s not sure what
you’re referring to.

Ofala: That conjecture I already… 

Sean: That’s not a conjecture. That’s a definition.

These children and their classmates are struggling
with concepts of evenness and oddness as a consequence
of one child’s claim that six could be even, and it could
also be odd because you have an odd number of groups
of two. Not unlike Benny, they are confronting puzzling
mathematics. They had thought that they understood
even and odd numbers. How could the number six be
both even and odd? But rather than simply accept the
student’s notion, appeal to the teacher, or dismiss what
might be seen as nonsense, the student’s classmates are
actively reasoning about elaborations of the claim and
about the student’s reasons for it. They have developed

Copyright © 2009 by the National Council of Teachers of Mathematics, Inc. www.nctm.org. All rights reserved. This material
may not be copied or distributed electronically or in other formats without written permission from NCTM.

http://www.nctm.org/publications/content.aspx?id=522


A Research Companion to Principles and Standards for School Mathematics28

resources for inspecting and judging mathematical claims
and arguments and for revising and developing mathe-
matical ideas. In the process, they are solidifying their
understanding of the definitions of even and odd. For
them, unlike Benny, mathematics is reasonable, that is,
something about which one can reason.

Mathematical Reasoning and Proof:
Essential as Both End and Means

NCTM’s Principles and Standards for School Mathemat-
ics (2000) makes a strong statement about the centrality
of mathematical reasoning by including a major standard
on reasoning and proof for all grades (p. 56):

Some may regard a standard on reasoning and proof
as a nice, but esoteric, embellishment to the main curric-
ular goals in mathematics. Some might even consider the
standard expendable. Quite the contrary. Mathematical
reasoning is no less than a basic skill. Why do we make
this claim?

First, the notion of mathematical understanding is
meaningless without a serious emphasis on reasoning.
What, after all, would mathematical “understanding”
mean if it were not founded on mathematical reasoning?
Take, for example, understanding multiplication of deci-
mals. Benny, like many adults, counted decimal places to
determine the number of places in an answer, but he had
no idea what it meant. Not understanding the reasons
underlying the procedure meant that he made senseless
mistakes. Why does multiplying .7 � .5 produce an an-
swer with two decimal places—.35—whereas adding the
same numbers, .7 + .5, yields an answer with just one

decimal place—1.2? Unjustified knowledge is unrea-
soned and, hence, easily becomes unreasonable.

A second reason for claiming that mathematical rea-
soning is a basic skill is that such reasoning is fundamen-
tal to using mathematics. Knowing particular mathemat-
ical ideas and procedures as mere fact or routine is
insufficient for using those ideas flexibly in diverse cases.
First graders who have learned to use the equals sign to
signal the result of an operation on two numbers are baf-
fled when presented with 8 = __ + 5. They think that the
8 does not “tell” them to “do” anything, and so they
often say there is no number to write in the blank. Their
thinking results from using the equals sign in number
sentences without reasoning about the concept of equal-
ity (Carpenter & Franke, 2001; Falkner, Levi, & Carpen-
ter, 1999). Or consider people who know that the proba-
bility of two independent events can be calculated by
multiplying the probability of the first event by the prob-
ability of the second. For flips of two fair coins, they thus
may correctly calculate the probability of two heads, or
of two tails, as 1/4 (= 1/2 � 1/2) and yet say that the
probability of one head and one tail is 1/3, seeing this
case as one of three possibilities (two heads, two tails, or
mixed), failing to take account of the fact that the mixed
case has two ways of occurring.

Third, mathematical reasoning is fundamental to re-
constructing faded knowledge when a demand for it
arises. A person who once knew how to divide fractions
but has forgotten the algorithm can rebuild a reasonable
procedure if he can use the meaning of division and of
fractions to reason about dividing one fraction by an-
other. Analyzing the basic meaning of division allows
him to see dividing fractions as not essentially different
from dividing any whole number by another: Dividing
4/5 by 2/3 is conceptually like dividing 6 by 3, even
though the numbers involved in the former example
have more complex descriptions. Or, consider a person
who learned—but has since forgotten—the formulas to
calculate probabilities of independent and of mutually
exclusive events. When asked what the probability is of
tossing two coins and getting two the same (i.e., two
heads or two tails), she may be unsure what operations to
perform. Should she multiply the probabilities of each
outcome? Add them? What are the outcomes? If she can
reason, however, about the logic of a probabilistic situa-
tion to analyze whether the outcomes are independent
or mutually exclusive, she will likely be able to figure
out that she must first multiply the probability of flip-
ping one head times the probability of flipping a second
and must do the same for two tails; the successive tosses
are independent. Each of these probabilities is 1/2 �

Reasoning and Proof

Instructional programs pre-kindergarten
through grade 12 should enable all students to—

• recognize reasoning and proof as funda-
mental aspects of mathematics;

• make and investigate mathematical 
conjectures;

• develop and evaluate mathematical argu-
ments and proofs;

• select and use various types of reasoning
and methods of proof. 



1/2, or 1/4. But to calculate the probability of getting
two coins the same, she will realize that she then must
add the chance of tossing two heads to that of tossing
two tails; the two-heads and two-tails outcomes are mu-
tually exclusive. Being able to reason mathematically 
allows her to recapture a way to work successfully with
the problem.

Our point is that mathematical reasoning is as funda-
mental to knowing and using mathematics as comprehen-
sion of text is to reading. Readers who can only decode
words can hardly be said to know how to read. Reading
competently depends on being able to understand the
structures of texts and nuances of language; to interpret
authors’ ideas; and to visualize, evaluate, and infer mean-
ings. Likewise, merely being able to operate mathemati-
cally does not assure being able to do and use mathemat-
ics in useful ways. Procedural operations are fundamental
to reasonable mathematical activity but are by themselves
little more than the analog of reciting text based on the
phonetic and structural analysis of words. Making mathe-
matics reasonable means making it reasoned and, there-
fore, known in useful and usable ways.

This chapter examines what is entailed by mathemat-
ical reasoning, and what this looks like as it develops 
in students in classrooms. Drawing from work on 
elementary school teaching and learning, and on the
practices of mathematics, we discuss a framework for
what we call the reasoning of justification—or proof.
Next, we turn to what it might take to make mathemat-
ics reasonable—that is, what can support the reasoning
about mathematics in school.

What Do We Mean by Mathematical Reasoning?

Making mathematics reasonable is more than individual
sense making. Making sense refers to making mathematical
ideas sensible, or perceptible, and allows for understanding
based only on personal conviction. Reasoning, as we use it,
comprises a set of practices and norms that are collective,
not merely individual or idiosyncratic, and rooted in the
discipline. Making mathematics reasonable entails mak-
ing it subject to, and the result of, such reasoning. That
an idea makes sense to me is not the same as 
reasoning toward understandings that are shared by 
others with whom I discuss and critically examine that
idea toward a shared conviction.

The desire to know and to understand has led people
to develop disciplined means of reasoning, of exploring
and verifying, of hypothesizing and justifying, in many
arenas of human activity. Historians reason about evi-
dence from the past, physicians reason about patients’
symptoms, chefs reason about composing ingredients
under particular conditions, and pilots reason about in-

strument readings. In none of these examples do individ-
uals make sense in whatever ways they choose. Instead, in
each of these arenas, people have developed methods of
reliable thinking that afford inspection, analysis, judg-
ment, and conclusions. These methods of reasoning are
the particular means of constructing and evaluating
knowledge in a domain.

Much has been written in recent years about construc-
tivist theories of learning and their implications for in-
struction. Indeed, constructivism has arguably been one of
the most influential—and most multiply interpreted—
ideas in mathematics education. Our research analyzes
classroom mathematics learning and teaching in light of
ideas about constructing knowledge that are rooted in
mathematics as a discipline. Lampert (1990, 1992) has
been exploring similar resonances between the practices
of knowing mathematics in school and those of knowing
mathematics in the discipline. When students are at work
in a mathematics class, for example, we see them as con-
structing mathematical knowledge. Looking at the devel-
opment of students’ knowledge in this way highlights the
fundamentally mathematical nature of their—and hence,
their teachers’—work. The ways in which students seek
to justify claims, convince their classmates and teacher,
and participate in the collective development of publicly
accepted mathematical knowledge have powerful reso-
nances with mathematicians’ work. As students explore
problems, make and inspect claims, and seek to prove
their validity, even as young children, they engage in sub-
stantial forms of mathematical reasoning and make use of
mathematical resources. Smith (1999) provides a vivid por-
trait of this through his close analyses of four nine-year-
olds’ individual mathematical reasoning. His account fo-
cuses on their use of language and representations as they
draw together and use mathematical resources to solve
problems. This mathematical perspective makes visible
some fundamental aspects of mathematics teaching and
learning that are hidden when instruction is viewed from a
purely cognitive or sociocultural perspective. In particular,
this analysis allows for and explores a subject-specific view
of learning.

This work finds company in recent advances in other
fields (e.g., Wilson, 2001; Wineburg, 1996). Shari Levine
Rose (1999), in a study of fourth graders’ learning of 
history in her own classroom, distinguishes between what
she was able to see in her students’ work when she viewed
it from the perspective of generic theories of learning and
when she later began to view their work using a lens of
historical reasoning. Initially, she explains, she was “influ-
enced by constructivist theories of learning,… [believing]
that children drew upon knowledge, values, and beliefs in
actively making sense of new information.” She argues,

Making Mathematics Reasonable in School 29



however, that the generic perspective did not help her
see how the children were constructing meaning of 
historical events. But with the historical lens, she was
struck by the “historical nature” of children’s sense
making. They repeatedly sought understanding
through constructing stories, much as historians fashion
narratives, embedding meaning and interpretation in
context. Rose writes about how the historical perspec-
tives that she brought to bear in hearing and interpret-
ing her students made visible how the children came to
know the past and constructed meaning of historical
events in ways that were much more rooted in the 
nature of historical reasoning.

Viewed from the perspective of the practicing mathe-
matician, reasoning is one of the principal instruments
for developing mathematical understanding and for con-
structing new mathematical knowledge. Mathematical
reasoning can serve as an instrument of inquiry in dis-
covering and exploring new ideas, a process that we call
the reasoning of inquiry. Mathematical reasoning also
functions centrally in justifying or proving mathematical
claims, a process that we call the reasoning of justification,
the focus of this chapter.

Historically, this sort of mathematical reasoning has
primarily been found in the high school geometry cur-
riculum in the context of constructing two-column
proofs, sometimes treated more as ritual than as an in-
strument of sense making. What might be entailed by a
broader conception and practice of mathematical reason-
ing in school, as called for by the NCTM’s standard on
reasoning and proof? In this chapter, we offer and illus-
trate a conceptual framework for learning and teaching
mathematical reasoning.

Teaching Commitments to Mathematics, Students, and
Community

Our study of mathematical reasoning is framed by a
conception of teaching founded on three specific com-
mitments—to the integrity of the discipline, to taking in-
dividual students’ thinking seriously, and to the collective
as an intellectual community. These commitments ori-
ent, but do not determine, practice. First is a commit-
ment to draw from mathematics as a discipline in intel-
lectually sound and honest ways (Ball, 1993; Ball & Bass,
2000a, 2000b; Bruner 1960; Lampert, 1990, 1992, 2001).
So in the case of this analysis, we ask, What mathemati-
cal habits and dispositions are crucial to doing and learn-
ing mathematics? What is the basis of mathematical rea-
soning? How is mathematical knowledge constructed in
the discipline? How do mathematicians interact as a
community over knowledge claims? These and other

questions have guided our study of making mathematics
reasonable, by and for children, in school.

In counterpoint, we assume that teaching demands a
sensitivity and responsiveness to students’ ideas, inter-
ests, lives, and trajectories. Teachers strive to hear their
students, to work with them as they investigate and in-
terpret their worlds. Respecting students means attend-
ing to who they are and what they bring as well as help-
ing them grow beyond where they are now or where
they think they can go. But attending to individual stu-
dents’ interests and proclivities is not enough. In school,
teachers must be concerned with “covering” the man-
dated curriculum so that each student is prepared for the
next grade and for the standardized tests used to chart
his or her progress. And while many seek to redefine
what “covering the curriculum” might mean (Lampert
1992, 2001), caring for students means also being re-
sponsible to current definitions of progress and learning
(Delpit, 1985). Understanding teaching as centrally
guided by students’ ideas and thinking has led our work
on mathematical reasoning to close examination of how
students come to hold and believe in mathematical
knowledge (Ball & Bass, 2000b).

Finally, the teaching in which we are interested aims
to create a classroom community in which differences
are valued; in which students learn to care about and 
respect one another; and in which commitments to a
just, democratic, and rational society are embodied and
learned (Dewey, 1916; Schwab, 1976). Care and respect
for others includes listening to, hearing, and being able
to represent others’ ideas, even those with which one
disagrees. Respect also means taking others’ ideas 
seriously, appraising them critically, and evaluating their
validity. In this work, we consider mathematical reasoning
as producing more than individual conviction: as gener-
ating public knowledge that is usable by the collective.

A Framework for Mathematical
Reasoning

The reasoning of justification in mathematics rests on
two foundations. One foundation is a body of public
knowledge on which to stand as a point of departure and
that defines the granularity of acceptable mathematical
reasoning within a given context or community. The sec-
ond foundation of mathematical reasoning is language—
symbols, terms, and other representations and their defi-
nitions—and rules of logic and syntax for their
meaningful use in formulating claims and the networks
of relationships used to justify them.
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We first discuss the base of public knowledge, the term
we use to refer to the knowledge on which claims and 
arguments are based within some context.Yackel and
Cobb (1996) use the label taken-as-shared to refer to the
meanings, norms, and ideas that are negotiated and used
as common within a classroom. Edwards and Mercer
(1987; 1989) also write about the development of 
common knowledge in teaching and learning and focus
particularly on the discourse patterns whereby teachers
establish such common knowledge. With Yackel and
Cobb, we are interested in normative aspects of mathe-
matics discussions specific to students’ mathematical 
activity, such as agreements about what counts as mathe-
matically different solutions or what counts as an ac-
ceptable mathematical explanation. And like Edwards
and Mercer, we are interested in the development of
common knowledge. In our framework, we focus fur-
ther on the specific mathematical knowledge that is
available for public use by a particular community in
constructing mathematical claims and in seeking to jus-
tify those claims to others. This knowledge is of 
particular ideas, accepted procedures, defined terms, and
methods of mathematical investigation and verification.
This knowledge is already assumed or developed—part
of the record of the children’s prior experience or the
class’s past work. By identifying it as public, we seek to
avoid implying that each member of the community
knows it individually in the same way; ascertaining how
mathematical knowledge is known individually is an em-
pirical question beyond the scope of our analysis. We
mean, rather, to call attention to the knowledge that can
comfortably be assumed and used publicly without addi-
tional explanation. We contrast such knowledge with
ideas or procedures that are not shared and must there-
fore be  established before they can be used to justify
claims in the collective discourse of a community.

This base of public knowledge is defined relative to a
particular community of reasoners. For professional
mathematicians, the base of public knowledge might
consist of an axiom system for some mathematical struc-
ture (e.g., Euclidean geometry or group theory), simply
admitted as given, plus a body of previously developed
and publicly accepted mathematical knowledge derived
from those axioms. We argue that this idea of a base of
public knowledge is useful in understanding the work of
a class of elementary school students as well, where this
base of public knowledge comprises the expanding set of
publicly established ideas and shared knowledge that can
be used by the class in explanation or justification.

Take a rudimentary example. Early in September one
day, in Ball’s third-grade class, the children were working

on this problem: “Write number sentences for 10.” In
the early stages of their work, most students were writing
simple equations: 4 + 6 = 10, 3 + 7 = 10, and 8 + 2 = 10.
Pressing them gently into more complex solutions, Ball
gave the children the following challenge (transcript of
class, 18 September 1989):

I wonder if someone can think of a number sen-
tence that uses more than two numbers here.
Just so we have a bunch of ideas of how we
could do this. Who can make a number sentence
that equals 10 but has more than two numbers
adding up to 10?

Quickly, Tembe began, “One plus one plus one plus
one—…” 

Ball wrote on the board as Tembe rattled off numbers:
“One plus one plus one plus one plus one plus one plus
one. Plus three.”

“Why does that equal ten?” asked Ball, who then
called on Harooun to justify Tembe’s claim. Harooun,
repeating, said, “That’s just one plus one plus one plus
one.…” Ball asked the students, “How do we know that
that equals ten?” Riba, eager to respond, explained, 
“Because one plus one plus one plus one plus one plus
one plus one and plus three equals ten.” Ball, still not
satisfied, said, “You’re just sort of reading it. How could
you prove it to somebody who wasn’t sure?”

Riba: Because I counted it.

Ball: What did you count? What did you find
out?

Riba: There’s one and the next one is two and the
next one is three, next one is four, next one is five, next
one is six, next one is seven, next one is—seven, and then
three more, eight, nine, ten.” 

In this simple segment, Tembe’s offered solution, the
first that included more than two terms, was not some-
thing automatically presumed to be within the common
knowledge of the class, and Ball asked for justification.
If this exchange had taken place in a fifth-grade class,
one would likely presume differently. A young child’s
initial sense of addition comes from counting, which is
adding one at a time. Adding many terms at once or
adding two numbers larger than one in a single step are
higher-order operations, not only for young children
but also mathematically. When Riba is called on to 
explain why the string of terms equals 10, she first just
recites the equation. When Ball presses her, “But how
could you prove it to somebody who wasn’t sure?” Riba
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replies that she “counted,” and Ball then encourages her
further to make this counting public. In response, Riba
expands her explanation: 

There’s one and the next one is two and the next
one is three, next one is four, next one is five,
next one is six, next one is seven, next one is—
seven, and then three more, eight, nine, ten.

Perhaps it is through this counting that Riba first
proves to herself that Tembe’s formulation was valid. Her
teacher is requiring her to make this reasoning public 
to persuade the class as well. Her teacher then publicly
validates Riba’s work, underlining early in the year a
standard for explanation and justification that is more
than simple restating of the assertion:

Do you see the difference in Riba’s second ex-
planation? Did you see how she really showed us
how it equals ten? The first time you just read it.
And the second time you explained it. That was
really nice.

Here the teacher does more than praise Riba. She
points explicitly to Riba’s work—the mathematical explana-
tion she has constructed—and comments on the difference
between repeating a statement and explaining it.

A process of reasoning typically consists of a sequence
of steps, each of which has the form of justifying one
claim by invocation of another, to which the first claim is
logically reduced. This process, which merely transforms
one claim into another, is not a vicious circle, because the
reduced claim is typically of a more elementary or acces-
sible nature and, in a finite number of such steps, one 
arrives at a claim that requires no further warrant 
because of being part of the base of publicly shared
knowledge and therefore universally persuasive within a
particular community of reasoners. Thus, the base of
public knowledge both constrains and enables the 
stepping-stones of an argument. In that sense, publicly
shared knowledge defines the granularity of acceptable
mathematical reasoning within a given context. In the
example above, the addition represented in the equation
1 +1 + 1 + 1 + 1 + 1 + 1 + 3 = 10 was not, at that moment,
presumed to be part of the base of established knowledge
of that class, and so Riba was pressed to reduce the claim
to an iterated counting, keeping track of the total as she
counted. At that point, Tembe’s assertion was sufficiently
reduced to a level that relied on knowledge common to
the class—counting by ones—and required no further
justification.

The crucial issue is how to justify a mathematical
claim. One way to justify a claim is to state the claim and

to undergird its truth by the sheer force of authority.
Students often receive mathematical knowledge in school
that is justified by little else than the textbook’s or the
teacher’s assertion. By default, the book has epistemic au-
thority: Teachers explain assignments to pupils by saying,
“This is what they want you to do here,” and the right
answers are found in the answer key. According to Davis
(1967), learning to “play by the rules” often involves a
“suspension of sense-making” in school mathematics.
But that route is the antithesis of warranting claims
through a process of mathematical reasoning.

The base of public knowledge consists of knowledge
of certain facts and concepts; of the meanings of mathe-
matical terms and expressions; and of procedures and re-
sources for calculation, for problem solving, and even for
reasoning. The base of public knowledge is always pres-
ent, in both latent and active forms, although it may be
tacit and only implicit in the discourse of the community,
whether mathematicians or third graders.

Whether a particular piece of knowledge is in fact
commonly shared is an empirical question, one that a
teacher must often assess. Did everyone in the class un-
derstand and agree that Riba’s elaborated explanation
satisfactorily proved Tembe’s claim? And, further, how
many children were not already adequately convinced by
his initial statement? These questions are difficult to re-
solve fully; they are also not completely within the
teacher’s or the students’ view as a class discussion pro-
ceeds. Still, reasoning within a community depends on
the presumption of common knowledge and shared es-
tablished methods. This presumption is most often rep-
resented by the use of knowledge already used and estab-
lished publicly. Arguments that do not build on publicly
shared knowledge are unlikely to produce grounded con-
viction in others. At the same time, the process of rea-
soning can in fact help build and extend a group’s com-
mon knowledge. As claims are proved, and ideas
developed, the claims may become part of the legacy of
public knowledge on which subsequent claims may de-
pend and build.

In our analysis, mathematical language is the founda-
tion of mathematical reasoning that is complementary to
the base of publicly shared knowledge. Language is used
here expansively, comprising the entire linguistic infra-
structure that supports mathematical communication
with its requirements for precision, clarity, and economy
of expression. Language is essential for mathematical rea-
soning and for communicating about mathematical ideas,
claims, explanations, and proofs. Language is a medium
in which mathematics is enacted, used, and created.
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In our framework, language includes the nature and
role of definitions in mathematics; the nature of, and
rules for, manipulating symbolic notation; and the con-
ceptual compression afforded by timely use of such nota-
tion. Definitions and terms play a crucial role: Not sim-
ply delivered names to be memorized, definitions and
terms originate in, and emerge from, new ideas and con-
cepts and develop through active investigation and re-
flection. Definitions and terms facilitate reasoning about
those new ideas by naming and specification. Decisions
about what to name, when to name it, and how to specify
that which is being named are important components of
mathematical sensibility and discrimination central to
the construction of mathematical knowledge. Using sym-
bolic and other representations to encode ideas, as well
as decoding ideas represented in symbolic or other
forms, are essential communicative tools for the con-
struction of mathematical knowledge. Precise language is
also needed to articulate the correspondences between
equivalent representations of the same mathematical en-
tity or concept. Notation can be used to compress ideas
into forms that, when done skillfully, can reduce compu-
tation and manipulation to manageable proportions; how
and when to do this is an important skill of mathematical
representation useful in reasoning.

Mathematical language is central to constructing
mathematical knowledge; it provides resources with
which claims are developed, made, and justified. 
Lampert writes,

Mathematical discourse is about figuring out
what is true, once the members of the discourse
community agree on their definitions and as-
sumptions. These definitions and assumptions
are not given, but are negotiated in the process
of figuring out what is true. (1990, p. 42)

Some disagreements stem from divergent or unrecon-
ciled uses of terminology, whereas others are rooted in
substantive and conflicting mathematical claims (Crum-
baugh, 1998; Lampert, 1998). The ability to distinguish
between issues of terminology and issues of mathemati-
cal claims requires sensitivity to the nature and role of
language in mathematics. We return to this aspect of lan-
guage in the examples analyzed in the next section of this
chapter.

Developing Mathematical Reasoning in
a Third-Grade Class

In this section, we take a close look at two classroom
episodes in which elementary school students are learn-
ing to engage in mathematical reasoning. These class-
room episodes are based on Ball’s third-grade class
records for the school year from 1989 to 1990 (see Lam-
pert & Ball, 1998). We have chosen two excerpts of 
instruction from the same classroom, one less than 
5 months after the first. In fact, the first episode is from
the first day of mathematics class in September, and the
second, from a day late in January. Our purpose in
choosing these two segments is to examine the evolution
of the reasoning of justification. What were the students
and teacher doing as they sought to reason about mathe-
matics in September, and in what ways were those 
approaches the same or different in January, less than 
5 months later? What do the students seem to be learn-
ing? Comparing these two points in time helps establish 
that mathematical reasoning is something that students
can learn to do and, hence, that teachers can teach. Our
analysis leads to the final section of the chapter, in
which we turn to considering what approaches teachers
might adopt to help make mathematics reasonable in
school.

In the first episode, early in September, the students
are working on an arithmetic problem that has multiple,
but finitely many—six—solutions. The task is to find all
the solutions and then to show that all solutions have
been found. In the later episode, in January, students are
working on a conjecture about addition of odd numbers:
that an odd number plus an odd number equals an even
number. The task is to determine whether this conjec-
ture is true. In both instances, the mathematical work 
for students calls for justification: How do you know 
that you have found all the answers? Can you prove that
this statement is always true? What the students do in
January entails more complex reasoning in that it 
concerns a claim about all the infinitely many pairs of
odd numbers; this work shows substantial development
of reasoning skills and sensibility since September.

September: How Do You Know That You Have Them All?

In the first regular mathematics period of the school
year, the students are working on the following problem:

I have pennies, nickels, and dimes in my pocket.
Suppose I pull out two coins. How much money
might I have?
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In setting up the task, Ball reads the problem with the
students and they try an example together. She asks the
class, “I’m going to pull out two coins. How much
money could I pull out? Like this, like I’m not even look-
ing and I’m going to reach in and pull out one coin and
reach in and pull out another. How much money might I
have?” “Ten cents,” proposes Lucy.

Ball asks for more explanation: “How could I pull out
10 cents?”

Lucy: Two 5s.

Ball: What do other people think about that? If I
pulled out two nickels, would I have 10 cents?

Students: Yeah.

Ball: How do you know that? How do you know
that that would be 10 cents? Ofala?

Ofala: Because five plus five is ten.

The students work on the task for about 20 minutes
while Ball circulates, noting what different students are
doing and asking and answering an occasional question.
A few times during class, Ball calls the group together to
share bits of work or to discuss how the work is proceed-
ing. We zoom in on the class discussion of solutions to
the problem because it affords a close look at the group’s
early efforts to reason mathematically, as individuals and
as a group.

About 20 minutes before the end of class, Ball brings
them back together. She elicits solutions to the problem
from different students. The class discusses and verifies
each proposed solution. Ball records the answers on the
board in a list:

15¢
20¢
6¢

11¢
2¢

10¢

Ball then reads the solutions off the board:

Ball: We have 15 cents, 20 cents, 6 cents, 11 cents, 2
cents, and 10 cents. Any more? Look at your lists, and
see if you have anything that we didn’t put on the board.
(pause) No, Ofala? You don’t have anything else in your
notebook? (pause) Jeannie, do you have anything else in
your notebook? Riba, do you? Does anybody? How
many different possible answers did we find for this
problem? How many answers did we come up with here?

Latifa: Six.

Latifa is right. They have come up with six solutions
for the problem. However, Ball does not affirm Latifa’s an-
swer. Instead, she presses a bit, pushing for justification.

Ball: Six answers. How do we know that we have
them all, though? How do we know there isn’t a seventh
one? Or an eighth one that we didn’t find yet?

Ofala, noting a constraint in the given statement of
the problem, says she thinks that six is all they can make
because they cannot use quarters. Mei comments, “I
think we have them all ’cause we had lots of them already
and all the people had six.”

Lisa speaks next, but her voice is almost inaudible.
Ball interrupts to tell her to “talk so that other people
can hear you,” and directs the rest of the class to listen to
what Lisa is saying. Lisa declares, more audibly, “We can
only pick up two coins, and if we pick up seven, then we
would be picking up three or four.” Ball, seeking to 
understand Lisa’s argument, asks for clarification, “So to
get a seventh answer, we’d have to pick up three coins?”
Lisa assents, and Ball asks her how she knows. Lisa says
something about a nickel and a penny, “and if we add
another penny, it will be seven and three coins.” She
seems to talking about a solution for seven cents, but, 
because it requires three coins, she may be trying to
show that the production of a seventh solution—Ball’s
original question—would require more than two coins.

At this juncture, Sheena raises her hand. She says that
she has been working on the question, and she keeps try-
ing to find more solutions but keeps “getting the same
answers.” Ball repeats her idea to the class: “If you keep
picking them up, you’ll get the same answers? How
many people solved this problem by picking up coins
until they got the same ones again?… How many people
reached into the box or onto their pile and kept picking
them up until they started to repeat?” Many students
raise their hands. “What’s another way to do the prob-
lem?” she asks, looking around.

Mei offers another method: “You first think of what
you can make from, you can make out of nickels, dimes,
and pennies; and then you take, and then you write them
down and you think about it some more until you’re—
(pause) then you’ll get them all.”

The children seem reasonably satisfied that they have
found all the solutions. They believe they have found
them all because they cannot find any more. This argu-
ment is empirical or inductive, not deductive. It is the
kind of empirical reasoning that can increase confidence
in a scientific hypothesis, but it is not a mathematical
proof. Still, the children find it persuasive, and they do
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not seem to conceive any method by which one could
confirm more definitively that they have all solutions.
Ball ends class by urging them to “think very hard before
math tomorrow” to see whether they can find any more
answers to this problem. By not affirming the complete-
ness of the solution—with six answers—she seeks to
maintain some need to show more firmly that they found
all the answers, something more than trying many 
solutions or being personally convinced.

At this early stage, the children have not witnessed or
been formally introduced to the notion of mathematical
proof. But we see here that the imperative to mathemati-
cally justify is being seeded in their work, before they
even know what a proof is or looks like. The challenges
to justify their own conjectures serve to motivate them to
construct, through reflection and analysis, some of the
intellectual architecture of mathematical reasoning.

January: Can We Prove That Betsy’s Conjecture Is Always
True?

We revisit the class almost five months later. The stu-
dents have been working on problems that involve pat-
terns with sums. For example, they have worked on such
problems as the following:

Erasers cost 2¢, and pencils cost 7¢. How many
different combinations of erasers and pencils can
you buy if you want to spend exactly 30¢?

The numbers in this problem have been chosen delib-
erately so that the children might notice that an even
number of pencils must be bought if the total has to be
30—an even number—because 7 is an odd number. 
Indeed, solving such problems has generated a series of
conjectures about even and odd numbers:

Even + even = even
Even + odd = odd
Odd + odd = even

Ball has helped the children formulate these conjectures
and understand them and has challenged the children to see
whether they could prove that these statements are always
true. The students have generated long lists of examples in
their notebooks, seeking to confirm the conjectures or to
find examples that do not work and therefore would show
that a conjecture is not (always) true. They are working in
small groups on a particular conjecture.

In the course of this work, something new happens.
For the first time, the thought occurs to some of the
children that to prove such a conjecture is something
they have not done before and that doing so presents
challenges they have not previously appreciated. Jeannie

and Sheena, who are working on the conjecture that an
odd number plus an odd number equals an even number,
report on their work:

Jeannie: Me and Sheena were working together, but
we didn’t find one that didn’t work. We were trying 
to prove that… you can’t prove that Betsy’s conjecture
(odd + odd = even) always works. Because, um, there’s, um,
like numbers go on and on forever, and that means odd
numbers and even numbers go on forever, so you couldn’t
prove that all of them work. 

Ofala protests. She declares, looking closely into her
notebook, that she has tried “almost eighteen” of them
and even some special cases, and they have all “worked,”
so she thinks that “it can always work.”

Mei then offers a very different kind of objection. “I
think it could always work because with those conjectures
[motioning to several previously discussed and widely
agreed-on conjectures posted above the chalkboard], we
haven’t even tried them with all the numbers there is, so
why do you say that those work? We haven’t tried those
with all the numbers that there ever could be.”

Ball asks whether this statement means that she is dis-
agreeing with Jeannie or agreeing with her. “I disagree,”
replies Mei, emphatically. Ball asks her to clarify what
she is saying, and she repeats and amplifies her point that
the class has already agreed to accept other conjectures
even though they were not able to check them with every
number. But Jeannie and Sheena are not to be deterred.
Jeannie says that she never said that those other conjec-
tures were true all the time. “Then why didn’t you 
disagree when everyone agreed with those conjectures?”
presses Mei. Sheena explains that they had never thought
about any of this before, and now they see that a prob-
lem exists because numbers go on forever. Class ends
with this issue unresolved, and Ball tells the students to
think some more about what Jeannie and Sheena are
claiming: “What do other people think? Do you think
we can’t prove that it’s always true, or do you think that
we can prove that it’s always true?”

A few days later, the class takes a big step. Betsy, 
together with a few classmates, presents a proof of the
conjecture, which they first illustrate with 7 + 7:

What we figured out how it’s always true is that we
would have seven dots, or lines, plus seven lines (draws
fourteen hash marks on the board, seven at a time)

Making Mathematics Reasonable in School 35


