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Effective Teaching and Learning
An excellent mathematics program requires effective teaching that engages students 
in meaningful learning through individual and collaborative experiences that promote 
their ability to make sense of mathematical ideas and reason mathematically.

T he teaching of mathematics is complex. It requires teachers to have a deep un-
derstanding of the mathematical knowledge that they are expected to teach (Ball, 
Thames, and Phelps 2008) and a clear view of how student learning of that mathemat-

ics develops and progresses across grades (Daro, Mosher, and Corcoran 2011; Sztajn et al. 
2012). It also requires teachers to be skilled at teaching in ways that are effective in devel-
oping mathematics learning for all students. This section presents, describes, and illustrates 
a set of eight research-informed teaching practices that support the mathematics learning of 
all students. Before turning to these teaching practices, however, we must be clear about the 
mathematics learning such teaching must inspire and develop and the inextricable connection 
between teaching and learning.

The learning of mathematics has been defined to include the development of five interrelated 
strands that, together, constitute mathematical proficiency (National Research Council 2001): 

1.	 Conceptual understanding

2.	 Procedural fluency

3.	 Strategic competence

4.	 Adaptive reasoning

5.	 Productive disposition

Conceptual understanding (i.e., the comprehension and connection of concepts, operations, 
and relations) establishes the foundation, and is necessary, for developing procedural fluency 
(i.e., the meaningful and flexible use of procedures to solve problems). 

Strategic competence (i.e., the ability to formulate, represent, and solve mathematical prob-
lems) and adaptive reasoning (i.e., the capacity to think logically and to justify one’s thinking) 
reflect the need for students to develop mathematical ways of thinking as a basis for solving 
mathematics problems that they may encounter in real life, as well as within mathematics and 
other disciplines. These ways of thinking are variously described as “processes” (in NCTM’s 
[2000] Process Standards), “reasoning habits” (NCTM  2009), or “mathematical practices” 
(National Governors Association Center for Best Practices and Council of Chief State School 
Officers [NGA Center and CCSSO] 2010). In this publication, in alignment with the Common 
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Core State Standards for Mathematics (CCSSM), we refer to them as “mathematical practices,” 
which represent what students are doing as they learn mathematics (see fig. 1).

1.  Make sense of problems and persevere in solving them.

2.  Reason abstractly and quantitatively.

3.  Construct viable arguments and critique the reasoning of  
	 others.

4.  Model with mathematics.

5.  Use appropriate tools strategically.

6.  Attend to precision.

7.  Look for and make use of structure.

8.  Look for and express regularity in repeated reasoning. 

Fig. 1. Standards for Mathematical Practice (NGO Center and CCSSO 2010, pp. 6–8)

The fifth strand identified on the preceding page, productive disposition, is “the tendency to 
see sense in mathematics, to perceive it as both useful and worthwhile, to believe that steady 
effort in learning mathematics pays off, and to see oneself as an effective learner and doer of 
mathematics” (National Research Council 2001, p. 131). Students need to recognize the value 
of studying mathematics and believe that they are capable of learning mathematics through 
resolve and effort (Schunk and Richardson 2011). This conviction increases students’ motiva-
tion and willingness to persevere in solving challenging problems in the short term and con-
tinuing their study of mathematics in the long term. Interest and curiosity evoked throughout 
the study of mathematics can spark a lifetime of positive attitudes toward the subject. 

Student learning of mathematics “depends fundamentally on what happens inside the class-
room as teachers and learners interact over the curriculum” (Ball and Forzani 2011, p. 17). 
Ball and other researchers (e.g., Ball et al. 2009; Grossman, Hammerness, and McDonald 
2009; Lampert 2010; McDonald, Kazemi, and Kavanagh 2013) argue that the profession of 
teaching needs to identify and work together toward the implementation of a common set of 
high-leverage practices that underlie effective teaching. By “high-leverage practices,” they 
mean “those practices at the heart of the work of teaching that are most likely to affect  
student learning” (Ball and Forzani 2010, p. 45). 

Although effective teaching of mathematics may have similarities with productive teaching 
in other disciplines (Duit and Treagust 2003; Hlas and Hlas 2012), each discipline requires 
focused attention on those teaching practices that are most effective in supporting student 
learning specific to the discipline (Hill et al. 2008; Hill, Rowan, and Ball 2005). Research 
from both cognitive science (Mayer 2002; Bransford, Brown, and Cocking 2000; National 
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Research Council 2012a) and mathematics education (Donovan and Bransford 2005;  
Lester 2007) supports the characterization of mathematics learning as an active process, in 
which each student builds his or her own mathematical knowledge from personal experiences, 
coupled with feedback from peers, teachers and other adults, and themselves. This research 
has identified a number of principles of learning that provide the foundation for effective 
mathematics teaching. Specifically, learners should have experiences that enable them to—

•	 engage with challenging tasks that involve active meaning making and support 
meaningful learning;

•	 connect new learning with prior knowledge and informal reasoning and, in the pro-
cess, address preconceptions and misconceptions;

•	 acquire conceptual knowledge as well as procedural knowledge, so that they can 
meaningfully organize their knowledge, acquire new knowledge, and transfer and 
apply knowledge to new situations;

•	 construct knowledge socially, through discourse, activity, and interaction related to 
meaningful problems;

•	 receive descriptive and timely feedback so that they can reflect on and revise their 
work, thinking, and understandings; and 

•	 develop metacognitive awareness of themselves as learners, thinkers, and problem 
solvers, and learn to monitor their learning and performance.

Mathematics Teaching Practices
Eight Mathematics Teaching Practices provide a framework for strengthening the teaching 
and learning of mathematics. This research-informed framework of teaching and learning 
reflects the learning principles listed above, as well as other knowledge of mathematics 
teaching that has accumulated over the last two decades. The list on the following page iden-
tifies these eight Mathematics Teaching Practices, which represent a core set of high-leverage 
practices and essential teaching skills necessary to promote deep learning of mathematics.

Obstacles
Dominant cultural beliefs about the teaching and learning of mathematics continue to be ob-
stacles to consistent implementation of effective teaching and learning in mathematics class-
rooms (Handal 2003; Philipp 2007). Many parents and educators believe that students should 
be taught as they were taught, through memorizing facts, formulas, and procedures and then 
practicing skills over and over again (e.g., Sam and Ernest 2000). This view perpetuates the 
traditional lesson paradigm that features review, demonstration, and practice and is still perva-
sive in many classrooms (Banilower et al. 2006; Weiss and Pasley 2004). Teachers, as well 
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Mathematics Teaching Practices

Establish mathematics goals to focus learning. Effective teaching of mathematics 
establishes clear goals for the mathematics that students are learning, situates goals within 
learning progressions, and uses the goals to guide instructional decisions.

Implement tasks that promote reasoning and problem solving. Effective teaching 
of mathematics engages students in solving and discussing tasks that promote mathematical 
reasoning and problem solving and allow multiple entry points and varied solution  
strategies. 

Use and connect mathematical representations. Effective teaching of mathematics 
engages students in making connections among mathematical representations to deepen 
understanding of mathematics concepts and procedures and as tools for problem solving.

Facilitate meaningful mathematical discourse. Effective teaching of mathematics 
facilitates discourse among students to build shared understanding of mathematical ideas 
by analyzing and comparing student approaches and arguments.

Pose purposeful questions. Effective teaching of mathematics uses purposeful  
questions to assess and advance students’ reasoning and sense making about important  
mathematical ideas and relationships. 

Build procedural fluency from conceptual understanding. Effective teaching of 
mathematics builds fluency with procedures on a foundation of conceptual understanding 
so that students, over time, become skillful in using procedures flexibly as they solve  
contextual and mathematical problems.

Support productive struggle in learning mathematics. Effective teaching of 
mathematics consistently provides students, individually and collectively, with  
opportunities and supports to engage in productive struggle as they grapple with 
mathematical ideas and relationships.

Elicit and use evidence of student thinking. Effective teaching of mathematics uses 
evidence of student thinking to assess progress toward mathematical understanding and 
to adjust instruction continually in ways that support and extend learning.

as parents, are often not convinced that straying from these established beliefs and practices 
will be more effective for student learning (Barkatsas and Malone 2005; Wilken 2008). 

In sharp contrast to this view is the belief that mathematics lessons should be centered on 
engaging students in solving and discussing tasks that promote reasoning and problem solving 
(NCTM 2009; National Research Council 2012a). Teachers who hold this belief plan lessons 
to prompt student interactions and discourse, with the goal of helping students make sense of 
mathematical concepts and procedures. However, the lack of agreement about what constitutes 
effective mathematics teaching constrains schools and school systems from establishing coher-
ent expectations for high-quality, productive teaching of mathematics (Ball and Forzani 2011). 

Teachers’ beliefs influence the decisions that they make about the manner in which they 
teach mathematics, as indicated in the table at the right. Students’ beliefs influence their 
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Beliefs about teaching and learning mathematics

Unproductive beliefs Productive beliefs

Mathematics learning should focus on 
practicing procedures and memorizing 
basic number combinations.

Mathematics learning should focus on 
developing understanding of concepts 
and procedures through problem solving, 
reasoning, and discourse.

Students need only to learn and use the 
same standard computational algorithms 
and the same prescribed methods to 
solve algebraic problems.

All students need to have a range of 
strategies and approaches from which to 
choose in solving problems, including, 
but not limited to, general methods, stan-
dard algorithms, and procedures.

Students can learn to apply mathematics 
only after they have mastered the basic 
skills.

Students can learn mathematics through 
exploring and solving contextual and 
mathematical problems.

The role of the teacher is to tell students 
exactly what definitions, formulas, and 
rules they should know and demonstrate 
how to use this information to solve  
mathematics problems. 

The role of the teacher is to engage 
students in tasks that promote reason-
ing and problem solving and facilitate 
discourse that moves students toward 
shared understanding of mathematics. 

The role of the student is to memorize 
information that is presented and then 
use it to solve routine problems on home-
work, quizzes, and tests.

The role of the student is to be actively 
involved in making sense of mathemat-
ics tasks by using varied strategies and 
representations, justifying solutions, 
making connections to prior knowledge 
or familiar contexts and experiences, and 
considering the reasoning of others.

An effective teacher makes the mathe-
matics easy for students by guiding them 
step by step through problem solving 
to ensure that they are not frustrated or 
confused.

An effective teacher provides students 
with appropriate challenge, encourages 
perseverance in solving problems, and 
supports productive struggle in learning 
mathematics.

perception of what it means to learn mathematics and their dispositions toward the subject. 
As the table summarizes, the impact of these beliefs on the teaching and learning of math-
ematics may be unproductive or productive. It is important to note that these beliefs should 
not be viewed as good or bad. Instead, beliefs should be understood as unproductive when 
they hinder the implementation of effective instructional practice or limit student access to 
important mathematics content and practices.

Overcoming the obstacles
Teaching mathematics requires specialized expertise and professional knowledge that in-
cludes not only knowing mathematics but knowing it in ways that make it useful for the work 
of teaching (Ball and Forzani 2010; Ball, Thames, and Phelps 2008). Mathematics teaching 
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demands subject-specific understanding and insight so that teachers can skillfully carry out 
their work in mathematics classrooms. Some of the work of mathematics teaching includes 
finding an example or task to make a specific mathematical point, linking mathematical 
representations to underlying ideas and other representations, and evaluating students’ math-
ematical reasoning and explanations. This work also requires teachers to be able to unpack 
mathematical topics that they know well and to reexamine these through the eyes of learners, 
as well as to be able to work with many learners simultaneously in classrooms, each with 
unique backgrounds, interests, and learning needs. 

The following discussion and illustrations of the eight Mathematics Teaching Practices 
support the incorporation of the productive beliefs identified above into the daily professional 
work of effective teachers of mathematics. This framework offers educators within schools 
and across districts a common lens for collectively moving toward improved instructional 
practice and for supporting one another in becoming skilled at teaching in ways that matter 
for ensuring successful mathematics learning for all students.

Establish Mathematics Goals  
to Focus Learning

Effective teaching of mathematics establishes clear goals for the mathematics that 
students are learning, situates goals within learning progressions, and uses the goals 
to guide instructional decisions.

Effective mathematics teaching begins with a shared understanding among teachers of the 
mathematics that students are learning and how this mathematics develops along learning 
progressions. This shared understanding includes clarifying the broader mathematical goals 
that guide planning on a unit-by-unit basis, as well as the more targeted mathematics goals 
that guide instructional decisions on a lesson-by-lesson basis. The establishment of clear 
goals not only guides teachers’ decision making during a lesson but also focuses students’ 
attention on monitoring their own progress toward the intended learning outcomes.

Discussion
Mathematics goals indicate what mathematics students are to learn and understand as a result 
of instruction (Wiliam 2011). In fact, “formulating clear, explicit learning goals sets the stage 
for everything else” (Hiebert et al. 2007, p. 57). Goals should describe what mathematical 
concepts, ideas, or methods students will understand more deeply as a result of instruction 
and identify the mathematical practices that students are learning to use more proficiently. 
Teachers need to be clear about how the learning goals relate to and build toward rigorous 
standards, such as the Common Core State Standards for Mathematics. The goals that guide 
instruction, however, should not be just a reiteration of a standard statement or cluster but 
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should be more specifically linked to the current classroom curriculum and student learning 
needs, referring, for example, to particular visual representations or mathematical concepts 
and methods that students will come to understand as a result of instruction. 

Learning goals situated within mathematics learning progressions (Daro, Mosher, and 
Corcoran 2011) and connected to the “big ideas” of mathematics (Charles 2005) provide a 
stronger basis for teachers’ instructional decisions. Learning progressions or trajectories 
describe how students make transitions from their prior knowledge to more sophisticated  
understandings. The progressions also identify intermediate understandings and link re-
search on student learning to instruction (Clements and Sarama 2004; Sztajn et al. 2012). 
Both teachers and students need to be able to answer crucial questions: 

•	 What mathematics is being learned? 

•	 Why is it important? 

•	 How does it relate to what has already been learned? 

•	 Where are these mathematical ideas going? 

Situating learning goals within the mathematical landscape supports opportunities to build 
explicit connections so that students see how ideas build on and relate to one another and 
come to view mathematics as a coherent and connected discipline (Fosnot and Jacob 2010; 
Ma 2010).

The mathematical purpose of a lesson should not be a mystery to students. Classrooms in 
which students understand the learning expectations for their work perform at higher levels 
than classrooms where the expectations are unclear (Haystead and Marzano 2009; Hattie 
2009). Although daily goals need not be posted, it is important that students understand 
the mathematical purpose of a lesson and how the activities contribute to and support their 
mathematics learning. Goals or essential questions motivate learning when students perceive 
the goals as challenging but attainable (Marzano 2003; McTighe and Wiggins 2013). Teachers 
can discuss student-friendly versions of the mathematics goals as appropriate during the les-
son so that students see value in and understand the purpose of their work (Black and Wiliam 
1998a; Marzano 2009). When teachers refer to the goals during instruction, students become 
more focused and better able to perform self-assessment and monitor their own learning 
(Clarke, Timperley, and Hattie 2004; Zimmerman 2001). 

A clear grasp of the mathematics frames the decisions that teachers make as they plan 
mathematics lessons, make adjustments during instruction, and reflect after instruction 
on the progress that students are making toward the goals. In particular, by establishing 
specific goals and considering how they connect with the broader mathematical landscape, 
teachers are better prepared to use the goals to make decisions during instruction (Hiebert 
et al. 2007). This includes facilitating meaningful discourse, ensuring connections among 
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mathematical ideas, supporting students as they struggle, and determining what counts as 
evidence of students’ learning (Seidle, Rimmele, and Prenzel, 2005). The practice of estab-
lishing clear goals that indicate what mathematics students are learning provides the starting 
point and foundation for intentional and effective teaching.

Illustration
Establishing clear goals begins with clarifying and understanding the mathematical expecta-
tions for student learning. Figure 2 presents an excerpt from a session in which two teachers, 
Ms. Burke and Mr. Miller, together with their math coach, engage in a collaborative planning 
session to discuss and clarify the mathematics learning goals for their second-grade students. 
Notice how the teachers begin by describing what the students will be doing in the lesson, 
rather than what they will be learning. Of course, teachers need to attend to the logistics of 
a lesson, but they must also give sufficient attention to establishing a detailed understand-
ing of the mathematics learning goals. Consider how the math coach intentionally shifts the 
conversation to a discussion of the mathematical ideas and learning that will be the focus of 
instruction.

Two classes of second-grade students are currently working on understanding and solving 
addition and subtraction problems set in real-world situations. The following conversation 
develops among two teachers and their math coach in a planning session. The teachers 
have selected three story problems to give meaning to subtraction and serve as a focus 
for one of the lessons:

•	 Morgan wants to buy the next book in her favorite series when it is released next 
month. So far, she has saved $15. The book will cost $22. How much more money 
does Morgan need to save so that she can buy the book? (Problem type: Add to/
Change Unknown)

•	 George and his dad are in charge of blowing up balloons for the party. The pack-
age had 36 balloons in it. After blowing up many balloons, George’s dad noticed 
that the package still contained 9 balloons. How many balloons had they blown up? 
(Problem type: Take from/Change Unknown) 

•	 Lou and Natalie are preparing to run a marathon. Lou ran 43 training miles this 
week. Natalie ran 27 miles. How much farther did Lou run than Natalie? (Problem 
type: Compare/Difference Unknown) 

Ms. Burke: I think we should have the students work together in small groups to 
solve the word problems.

Mr. Miller: I agree, and they could take turns reading the problems, and then 
everyone could draw diagrams or use cubes to solve them, and then 
they could compare their answers.

Fig. 2. Collaborative planning session focused on clarifying mathematics goals for a 
lesson on problem situations for subtraction
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Math Coach: OK, that’s what you want the students to do. So now let’s talk more 
about what is it that you want your students to learn as a result of 
this lesson.

Ms. Burke: We want them to better understand these different types of word 
problems and be able to solve them.

Math Coach: OK. So, let’s list some of the indicators that would show they  
understand.

Mr. Miller: They would be able to use cubes or draw diagrams to show what is 
happening in the problem, explain what they did and why, and be 
able to get the right answer.

Ms. Burke: I also want them to write an equation that models each situation. 
Some of the equations might be 15 + ☐ = 22, 36 = ☐ + 9 or  
36 – ☐ = 9, and 43 – 27 = ☐ or 43 = 27 + ☐.

Mr. Miller: Then if we have time in this lesson, or maybe the next day, we want 
the students to compare the different problems and equations and 
be able to explain how these relate to addition and subtraction, 
even though the contexts seem so different.

Math Coach: Can you say a little more about why you picked these three  
problems for this lesson?

Mr. Miller: Each word problem is about a different situation that gives meaning 
to subtraction. One problem is about finding an unknown addend, 
one is about subtraction as taking away, and the other is about find-
ing the difference when comparing two amounts. 

Ms. Burke: We are hoping that the students get better at thinking about the 
relationships among the quantities in each context and how this re-
lates to addition and subtraction. And they need to be able to work 
with these harder problem types and not just the easy take-away 
word problems [i.e., Take from/Result Unknown]. 

Math Coach: Let me see if I can summarize this for us. Your learning goals for 
these lessons are for the students to represent and solve word 
problems by using diagrams or objects and equations, compare 
how the problem situations are similar and different, and explain 
how the underlying structure in each problem relates to addition 
and subtraction.

Ms. Burke: Yes, and in their explanations, I want to hear them talk about what 
each number means in the problem, so in this lesson they know the 
total amount and one of the parts or addends, and they need to find 
the other unknown addend. 

Fig. 2. Continued

As a result of the planning conversation, the teachers have a more precise understanding 
of the addition and subtraction concepts that they hope will surface during the lesson. For 

Note: Classification of problem types is based on CCSSM Glossary, Table 1 (NGA Center and CCSSO 2010, p. 88).
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example, they expect their students to connect math drawings and equations and compare the 
mathematical structures of the various types of problem situations. At the beginning of the 
lesson, they discuss with students the goal and importance of understanding different kinds 
of word problems by using math drawings and writing equations. During instruction, the 
teachers are attentive to ensuring that students are not just finding the answers to the word 
problems but are able to explain how each problem relates to addition and subtraction and 
how that relationship is reflected in their drawings and equations. This in turn will compel 
students to focus on the how these problem situations relate to addition and subtraction and 
why that is an important aspect in their learning of mathematics.

Teacher and student actions
Effective teaching requires a clear understanding of what students need to accomplish mathe-
matically. Clear learning goals focus the work of teaching and student learning. Teachers need 
to establish clear and detailed goals that indicate what mathematics students are learning, and 
they need to use these goals to guide decision making during instruction. Students also need 
to understand the mathematical purpose of a lesson. Teachers should help students under-
stand how specific activities contribute to and support the students’ learning of mathematics 
as appropriate during instruction. Students can then gauge and monitor their own learning 
progress. The actions listed in the table below provide guidance on what teachers and students 
do in establishing and using goals to focus learning in the mathematics classroom. 

Establish mathematics goals to focus learning 
Teacher and student actions

What are teachers doing? What are students doing?

Establishing clear goals that articulate 
the mathematics that students are learn-
ing as a result of instruction in a lesson, 
over a series of lessons, or throughout a 
unit.

Identifying how the goals fit within a 
mathematics learning progression.

Discussing and referring to the math-
ematical purpose and goal of a lesson 
during instruction to ensure that stu-
dents understand how the current work 
contributes to their learning.

Using the mathematics goals to guide 
lesson planning and reflection and to 
make in-the-moment decisions during 
instruction.

Engaging in discussions of the mathematical 
purpose and goals related to their current work 
in the mathematics classroom (e.g., What are 
we learning? Why are we learning it?)

Using the learning goals to stay focused on 
their progress in improving their understand-
ing of mathematics content and proficiency in 
using mathematical practices. 

Connecting their current work with the mathe-
matics that they studied previously and seeing 
where the mathematics is going.

Assessing and monitoring their own under-
standing and progress toward the mathematics 
learning goals. 
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Implement Tasks That Promote Reasoning  
and Problem Solving

Effective teaching of mathematics engages students in solving and discussing tasks 
that promote mathematical reasoning and problem solving and allow multiple entry 
points and varied solution strategies.

Effective mathematics teaching uses tasks as one way to motivate student learning and help 
students build new mathematical knowledge through problems solving. Research on the use 
of mathematical tasks over the last two decades has yielded three major findings:

1.	 Not all tasks provide the same opportunities for student thinking and learning.  
(Hiebert et al. 1997; Stein et al. 2009) 

2.	 Student learning is greatest in classrooms where the tasks consistently encourage 
high-level student thinking and reasoning and least in classrooms where the tasks 
are routinely procedural in nature. (Boaler and Staples 2008; Hiebert and Wearne 
1993; Stein and Lane 1996) 

3.	 Tasks with high cognitive demands are the most difficult to implement well and are 
often transformed into less demanding tasks during instruction. (Stein, Grover, and 
Henningsen 1996; Stigler and Hiebert 2004) 

To ensure that students have the opportunity to engage in high-level thinking, teachers must 
regularly select and implement tasks that promote reasoning and problem solving. These 
tasks encourage reasoning and access to the mathematics through multiple entry points, in-
cluding the use of different representations and tools, and they foster the solving of problems 
through varied solution strategies. 

Furthermore, effective teachers understand how contexts, culture, conditions, and language 
can be used to create mathematical tasks that draw on students’ prior knowledge and expe-
riences (Cross et al. 2012; Kisker et. al. 2012; Moschkovich 1999, 2011) or that offer students 
a common experience from which their work on mathematical tasks emerges (Boaler 1997; 
Dubinsky and Wilson 2013; Wager 2012). As a result of teachers’ efforts to incorporate 
these elements into mathematical tasks, students’ engagement in solving these tasks is more 
strongly connected with their sense of identity, leading to increased engagement and motiva-
tion in mathematics (Aguirre, Mayfield-Ingram, and Martin 2013; Boaler 1997; Hogan 2008; 
Middleton and Jansen 2011).

Discussion
Mathematical tasks can range from a set of routine exercises to a complex and challenging 
problem that focuses students’ attention on a particular mathematical idea. Stein and colleagues 
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(Stein, Grover, and Henningsen 1996; Stein and Smith 1998) have developed a taxonomy of 
mathematical tasks based on the kind and level of thinking required to solve them. Smith and 
Stein (1998) show the characteristics of higher- and lower-level tasks and provide samples 
in each category; figure 3 reproduces their list of the characteristics of tasks at four levels of 
cognitive demand, and figure 4 provides examples of tasks at each of the levels.

Fig. 3. Characteristics of mathematical tasks at four levels of cognitive demand.  
From Smith and Stein (1998).
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Fig. 4. Sample tasks for four levels of cognitive demand. From Smith and Stein (1998).

From the perspective of this taxonomy, mathematical tasks are viewed as placing higher- 
level cognitive demands on students when they allow students to engage in active inquiry and 
exploration or encourage students to use procedures in ways that are meaningfully connected 
with concepts or understanding. Tasks that encourage students to use procedures, formulas, or 
algorithms in ways that are not actively linked to meaning, or that consist primarily of memo-
rization or the reproduction of previously memorized facts, are viewed as placing lower-level 
cognitive demands on students. Consider figure 5, which shows two tasks, both of which might 
be used in an algebra unit that includes analyzing and solving pairs of simultaneous equations.
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Task A: Smartphone Plans Task B: Solving systems of equations

You are trying to decide which of two 
smartphone plans would be better.  
Plan A charges a basic fee of $30 per 
month and 10 cents per text message. 
Plan B charges a basic fee of $50 per 
month and 5 cents per text message. 

How many text messages would you need 
to send per month for plan B to be the 
better option? Explain your decision.

(Adapted from Illustrative Mathematics Illustrations: 
www.illustrativemathematics.org/illustrations/469.)

Solve each of the following systems:

–4x – 2y = –12
4x + 8y = –24

x – y = 11
2x + y = 19

8x + y = –1
–3x + y = –5

5x + y = 9
10x – 7y = –18

Fig. 5. Comparison of tasks with different cognitive demand

Task A is a high-level task, since no specific pathway has been suggested or is implied, and 
students could use several different approaches to enter and solve the task (e.g., guess and 
check, make a table, graph equations to find the point of intersection, solve a system of two 
linear equations by using algebra). Further, students must put forth effort to determine and 
enact a course of action and justify the reasonableness and accuracy of their solutions. By 
contrast, task B is a low-level task because it is likely that students are expected to use a 
specific memorized procedure that leaves little or no ambiguity about what they need to do. 
The mathematics that students can learn in doing a high-level task is significantly different 
from the mathematics that they learn from low-level tasks. Over time, the cumulative effect 
of the use of mathematics tasks is students’ implicit development of ideas about the nature of 
mathematics—about whether mathematics is something that they personally can make sense 
of and how long and how hard they should have to work to solve any mathematical task. 

It is important to note that not all tasks that promote reasoning and problem solving have to 
be set in a context or need to consume an entire class period or multiple days. What is critical 
is that a task provide students with the opportunity to engage actively in reasoning, sense 
making, and problem solving so that they develop a deep understanding of mathematics. 
Take, for example, the task on exponential functions in figure 6, which calls on students to 
analyze functions by using visual representations. In working on this task, students explore 
what happens to the graph of the function when the values of a change, and through their use 
of representations, they generalize the behavior of the function.
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Using your graphing calculator, investigate the 
changes that occur in the graph of y = ax for 
different values of a, where a is any real number. 
Explain what happens in the following cases: 

	 (1)	 a > 1

	 (2)	 a = 1

	 (3)	 0 < a < 1

	 (4)	 a = 0

	 (5)	 a < 0

Fig. 6. An algebra task requiring students to use graphical representations  
to analyze exponential functions 

This task promotes problem solving because students are positioned to explore the situa-
tion without being told in advance what to expect. Through reasoning about this task, they 
are likely to determine the general shape of the graph of the function (e.g., when a > 1, the 
graph starts out “flat” and close to the x-axis and then shoots up; when 0 < a < 1,  the graph 
shows a rapidly shrinking function), what occurs at 0 and 1, and the difference between a 
growth function and a decay function. Extending this discussion to the case of a < 0  
provides an important opportunity for students to learn why exponential functions are  
restricted to a ≥ 0.  

Tasks engaging students in reasoning and problem solving are not limited to middle and 
high school content. Consider the task in figure 7, in which students in kindergarten–grade 1 
decompose the number 10 into pairs in more than one way. 

There are 10 cars in the parking lot. Some of the cars are red and some of the cars are 
black. How many red cars and how many black cars could be in the parking lot?

Think of as many different combinations of cars as you can.

Show your solutions in as many ways as you can with cubes, drawings, or words, and 
write an equation for each solution.

Fig. 7. A task for K–grade 1 on number pairs that make 10. Adapted from the  
North Carolina Department of Public Instruction;  

http://commoncoretasks.ncdpi.wikispaces.net/First+Grade+Tasks.
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In this problem, students identify one or more combinations that equal 10, using drawings, 
cubes, or other tools (e.g., fingers, ten frame, Rekenrek) as needed to support their prob-
lem solving and explaining. This is a high-level task for most kindergarten and first-grade 
students because they have not yet learned these combinations, and they can use a variety of 
strategies (e.g., trial and error, counting up to 10 from a selected number, decomposing 10 
into two sets) to determine the combinations that will work. Through the process of solving 
this task, students may recognize similar combinations (e.g., 4 + 6 = 6 + 4) and begin to see 
number patterns (e.g., 1 + 9, 2 + 8, 3 + 7; as one number gets bigger by 1, the other number 
gets smaller by 1). 

In determining the level of task, it is important to consider the prior knowledge and experi-
ences of the students who will be engaged in the task. Tasks may begin as high-level tasks 
for students who are initially learning about the underlying mathematics (e.g., systems of 
linear equations, behaviors of functions, number combinations). Eventually, as students solid-
ify their understanding of the underlying mathematics, these tasks may become more routine 
experiences for them. Students then need tasks that further extend these mathematical ideas 
in ways that continue to deepen understanding and strengthen mathematical reasoning and 
problem solving.

Illustration
Although selecting tasks that promote reasoning and problem solving is a critical first step, 
giving the task to students does not guarantee that students will actually engage in the task at 
a high level. Consider the comparison that figure 8 presents in the implementation of task A, 
Smartphone Plans, shown in figure 5, in two algebra classrooms.

Note that although Ms. Carson uses a task that could promote reasoning, as soon as she sees 
students struggling, she provides them with a pathway for solving the task. By taking over 
the thinking for her students, Ms. Carson removes their opportunity to engage deeply and 
meaningfully with the mathematics and leaves them simply to apply a specific procedure.

By contrast, when Ms. McDonald sees her students struggling to figure out what to do, she 
provides suggestions that will help them make progress on the task without giving them a 
specific pathway to follow. This is the approach that NCTM (2000 p. 19) has long advocated: 

Teachers must decide what aspects of a task to highlight, how to organize and orchestrate the 
work of the students, what questions to ask to challenge those with varied levels of expertise, 
and how to support students without taking over the process of thinking for them and thus 
eliminating the challenge.

As a result of the way in which Ms. McDonald orchestrates the lesson, students have the 
opportunity to consider different strategies and engage in mathematical problem solving at a 
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As students in two algebra classrooms begin working with their partners on the  
Smartphone Plans task, it becomes evident that students are struggling to get started.

Ms. Carson’s classroom

Ms. Carson calls the class together and tells the students that they first need to write 
equations for both smartphone plans. She writes y = mx + b on the board and asks 
students what m and b would be for each phone plan. Once they have established the 
two equations, she goes to the board and creates a table that contains three columns: x 
(number of text messages), y1 (cost for plan A), and y2 (cost for plan B). She suggests that 
they begin with 0 text messages and then increment the x values in the table by 10. The 
students resume their work with their partners and easily complete the table, identifying 
(400, 70) as the point of intersection of the two equations.

Ms. McDonald’s classroom

Ms. McDonald poses questions to students as she walks around the room. When she no-
tices students struggling to get started, she asks them how much it will cost to send one 
text message in each plan. This question enables her to be sure that the students under-
stand the relationship among the number of messages, the cost per message, and the 
basic fee. She asks them which plan will cost more for a specific number of messages and 
to consider whether this plan’s cost will always be higher. Then she leaves the partners 
to discuss ways to use this information to solve the problem. As the students continue 
working, she observes different approaches, hears debates on whether the answer is  
400 messages or 401 messages, and plans how to sequence the whole-class discussion 
to analyze and compare the varied strategies.

Fig. 8. A look inside two algebra classrooms at the implementation of  
Smartphone Plans (task A in fig. 5)

high level of cognitive demand. Moreover, and most important, the students are challenged to 
deepen their understanding of linear equations and what the point of intersection means, both 
graphically and contextually. 

Teacher and student actions
For students to learn mathematics with understanding, they must have opportunities to 
engage on a regular basis with tasks that focus on reasoning and problem solving and make 
possible multiple entry points and varied solution strategies. The actions listed in the table 
on the next page provide a summary of what teachers and students need to do when imple-
menting such tasks in the mathematics classroom. It is important to note that tasks that focus 
on learning and applying procedures do have a place in the curriculum and are necessary for 
developing fluency. Such tasks, however, should not dominate instruction and preempt the 
use of tasks that promote reasoning. Instead, these tasks should build on and emerge from 
these sense-making and problem-solving experiences. 
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Implement tasks that promote reasoning and problem solving
Teacher and student actions

What are teachers doing? What are students doing?

Motivating students’ learning of mathe-
matics through opportunities for explor-
ing and solving problems that build on 
and extend their current mathematical 
understanding.

Selecting tasks that provide multiple en-
try points through the use of varied tools 
and representations.

Posing tasks on a regular basis that re-
quire a high level of cognitive demand.

Supporting students in exploring tasks 
without taking over student thinking. 

Encouraging students to use varied ap-
proaches and strategies to make sense of 
and solve tasks.

Persevering in exploring and reasoning 
through tasks. 

Taking responsibility for making sense of 
tasks by drawing on and making connec-
tions with their prior understanding and 
ideas.

Using tools and representations as need-
ed to support their thinking and problem 
solving.

Accepting and expecting that their 
classmates will use a variety of solution 
approaches and that they will discuss and 
justify their strategies to one another. 

Use and Connect Mathematical 
Representations

Effective teaching of mathematics engages students in making connections among 
mathematical representations to deepen understanding of mathematics concepts  
and procedures and as tools for problem solving.

Effective mathematics teaching includes a strong focus on using varied mathematical repre-
sentations. NCTM (2000) highlighted the important role of mathematical representations in the 
teaching and learning of mathematics by including the Process Standard for Representation in 
Principles and Standards for School Mathematics. Representations embody critical features 
of mathematical constructs and actions, such as drawing diagrams and using words to show 
and explain the meaning of fractions, ratios, or the operation of multiplication. When students 
learn to represent, discuss, and make connections among mathematical ideas in multiple forms, 
they demonstrate deeper mathematical understanding and enhanced problem-solving abilities 
(Fuson, Kalchman, and Bransford 2005; Lesh, Post, and Behr 1987). 

Discussion
The general classification scheme for types of representations shown in figure 9 indicates im-
portant connections among contextual, visual, verbal, physical, and symbolic representational 
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forms (Lesh, Post, and Behr 1987). Tripathi (2008) noted that using these “different represen-
tations is like examining the concept through a variety of lenses, with each lens providing a 
different perspective that makes the picture (concept) richer and deeper” (p. 439). Students, 
especially young learners, also benefit from using physical objects or acting out processes 
during problem solving (National Research Council 2009).

Verbal

Symbolic

Visual

Contextual

Physical

Fig. 9. Important connections among mathematical representations

According to the National Research Council (2001), “Because of the abstract nature of math-
ematics, people have access to mathematical ideas only through the representations of those 
ideas” (p. 94). The depth of understanding is related to the strength of connections among 
mathematical representations that students have internalized (Pape and Tchoshanov 2001; 
Webb, Boswinkel, and Dekker 2008). For example, students develop understanding of the 
meaning of the fraction 7/4 (symbolic form) when they can see it as the quantity formed by 
“7 parts of size one-fourth” with a tape diagram or on a number line (visual form), or mea-
sure a string that has a length of 7-fourths yards (physical form).

Visual representations are of particular importance in the mathematics classroom, helping 
students to advance their understanding of mathematical concepts and procedures, make 
sense of problems, and engage in mathematical discourse (Arcavi 2003; Stylianou and  
Silver 2004). Visuals support problem solving as students consider relationships among 
quantities when they sketch diagrams or make tables and graphs. The visual representa-
tions also support discourse because the diagrams or drawings leave a trace of student 
problem solving that can be displayed, critiqued, and discussed. Math drawings and other 
visual supports are of particular importance for English language learners, learners with 
special needs, or struggling learners, because they allow more students to participate 
meaningfully in the mathematical discourse in the classroom (Fuson and Murata 2007). 
The visuals assist students in following the reasoning of their classmates and in giving 
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voice to their own explanations as they gesture to parts of their math drawings and other 
visual representations.

Students’ understanding is deepened through discussion of similarities among representa-
tions that reveal underlying mathematical structures or essential features of mathematical 
ideas that persist regardless of the form (Zimba 2011). For example, fractions are composed 
of the iteration of unit fractions, a structure that can be identified and discussed when stu-
dents use paper strips as fraction models, draw tape diagrams or number lines, or use sym-
bols. Likewise, the addition of fractions has a structure that is similar to that of the addition 
of whole numbers, in that all addition involves combining same-sized units, such as adding 
tens to tens or twelfths to twelfths. Mathematical structure can also be emphasized and dis-
cussed by asking students to translate or alternate directionality among the various represen-
tations, such as by linking symbols back to contexts (e.g., describing a real-world situation 
for 3 × 29 or y = 3x + 5), making a table of values for a given ratio, or making a graph based 
on the information in a table (Greeno and Hall 1997). 

Success in solving problems is also related to students’ ability to move flexibly among rep-
resentations (Huinker 2013; Stylianou and Silver 2004). Students should be able to approach 
a problem from several points of view and be encouraged to switch among representations 
until they are able to understand the situation and proceed along a path that will lead them 
to a solution. This implies that students view representations as tools that they can use to 
help them solve problems, rather than as an end in themselves. If, by contrast, algebra tiles 
or base-ten blocks, for instance, are not used meaningfully, students may view use of the 
physical objects as the goal instead of reaching an understanding of how the tiles allow them 
to make sense of polynomials or how the base-ten blocks show the structure of the base-ten 
number system. 

Illustration
Students’ representational competence can be developed through instruction. Marshall,  
Superfine, and Canty (2010, p. 40) suggest three specific strategies:

1.	 Encourage purposeful selection of representations. 

2.	 Engage in dialogue about explicit connections among representations. 

3.	 Alternate the direction of the connections made among representations. 

Consider the lesson presented in figure 10, and focus on how the teacher, Mr. Harris, uses 
these strategies with his third-grade students as they represent and solve a problem involving 
setting up chairs for a band concert.



The third-grade class is responsible for setting up the chairs for the spring band concert. 
In preparation, they have to determine the total number of chairs that will be needed and 
ask the school’s engineer to retrieve that many chairs from the central storage area. 

Mr. Harris explains to his students that they need to set up 7 rows of chairs with 20 chairs 
in each row, leaving space for a center aisle. Next he asks the students to consider how 
they might represent the problem: “Before you begin working on the task, think about a 
representation you might want to use and why, and then turn and share your ideas with a 
partner.”

The students then set to work on the task. Most sketch equal groups or decompose 
area models. Two students cut an array out of grid paper. A few students make a table 
or T-chart, listing the number of rows with the corresponding number of chairs. Some 
students use symbolic approaches, such as repeated addition or partial products. 

A few students change representations as they work. Dominique starts to draw tally 
marks but then switches to using a table. When Mr. Harris asks her why, she explains that 
she got tired of making all those marks. Similarly, Jamal starts to build an array with con-
necting cubes but then switches to drawing an array. These initial attempts are valuable, 
if not essential, in helping each of these students make sense of the situation. 

As the students work, the teacher poses purposeful questions to press them to consider 
critical features of their representations: “How does your drawing show 7 groups?” “Why 
are you adding all those twenties?” “How many twenties are you adding, and why?”

Before holding a whole-class discussion, Mr. Harris has the students find a classmate who 
used a different representation and directs them to take turns explaining and comparing 
their work as well as their solutions. For example, Jasmine, who drew the diagram shown 
below on the left, compares her work with Kenneth, who used equations, as shown on 
the right. Then Mr. Harris has the students repeat the process, finding another classmate 
and holding another share-and-compare session.

                          Jasmine’s drawing	                            Kenneth’s equations

Mr. Harris begins the whole-class discussion by summarizing the goal for the lesson as 
understanding how the different representations are related to the operation of multipli-
cation. He first asks students to identify and explain how different visual representations 
show both the number of equal groups and the amount in each group as a structure of 

Fig. 10. A third-grade lesson emphasizing mathematical representations to solve a 
task on setting up chairs for a band concert
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multiplication. This prompts the students to compare diagrams with equal groups, arrays, 
and area models and discuss how they are similar and different. The students comment 
that it is easy to see the number of chairs in each row in some of the diagrams but not in 
others. Mr. Harris then writes 7 × 20 on the board and asks the students to explain how 
the expression matches each of the diagrams. 

Finally, Mr. Harris has the students discuss and compare the representations of those 
students who considered the aisle and worked with tens rather than with twenties, such 
as Amanda, whose work is shown below. He asks them to take this final step, knowing 
that this informal experience and discussion of the distributive property will be important 
in subsequent lessons. 

Amanda’s work with tens

Fig. 10. Continued

Mr. Harris selects the task about the chairs for the band concert to focus on a problem situa-
tion that can be represented with arrays. The goal for the lesson is for students to understand 
how the structure of multiplication is evident within and among different representations. He 
chooses the numbers purposefully to build his students’ conceptual understanding of multi-
plying one-digit whole numbers by multiples of 10, using strategies based on place value and 
properties of operations. He allows students to select and discuss their choices to represent 
the problem situation. Mr. Harris pays close attention to what students are doing, and the 
questions that he poses as they work and during the whole-class discussion help his students 
make explicit connections among the representations in ways that further their understanding 
of the central mathematical ideas of the lesson. 

Teacher and student actions
Effective teaching emphasizes using and making connections among mathematical represen-
tations to deepen student understanding of concepts and procedures, support mathematical 



Effective Teaching and Learning

 • • • 29

discourse among students, and serve as tools for solving problems. As students use and make 
connections among contextual, physical, visual, verbal, and symbolic representations, they 
grow in their appreciation of mathematics as a unified, coherent discipline. The teacher and 
student actions listed in the table below provide a summary of what teachers and students do 
in using mathematical representations in teaching and learning mathematics. 

Use and connect mathematical representations
Teacher and student actions

What are teachers doing? What are students doing?

Selecting tasks that allow students to 
decide which representations to use in 
making sense of the problems.

Allocating substantial instructional time 
for students to use, discuss, and make 
connections among representations. 

Introducing forms of representations that 
can be useful to students.

Asking students to make math drawings 
or use other visual supports to explain 
and justify their reasoning.

Focusing students’ attention on the struc-
ture or essential features of mathematical 
ideas that appear, regardless of the repre-
sentation. 

Designing ways to elicit and assess 
students’ abilities to use representations 
meaningfully to solve problems.

Using multiple forms of representations 
to make sense of and understand mathe-
matics.

Describing and justifying their mathemat-
ical understanding and reasoning with 
drawings, diagrams, and other represen-
tations.

Making choices about which forms of 
representations to use as tools for solving 
problems.

Sketching diagrams to make sense of 
problem situations.

Contextualizing mathematical ideas by 
connecting them to real-world situations.

Considering the advantages or suitability 
of using various representations when 
solving problems.

Facilitate Meaningful Mathematical Discourse 
Effective teaching of mathematics facilitates discourse among students to build 
shared understanding of mathematical ideas by analyzing and comparing student 
approaches and arguments.

Effective mathematics teaching engages students in discourse to advance the mathematical 
learning of the whole class. Mathematical discourse includes the purposeful exchange of 
ideas through classroom discussion, as well as through other forms of verbal, visual, and 
written communication. The discourse in the mathematics classroom gives students oppor-
tunities to share ideas and clarify understandings, construct convincing arguments regarding 
why and how things work, develop a language for expressing mathematical ideas, and learn 
to see things from other perspectives (NCTM 1991, 2000). 
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Discussion
Discourse that focuses on tasks that promote reasoning and problem solving is a primary 
mechanism for developing conceptual understanding and meaningful learning of mathe-
matics (Michaels, O’Connor, and Resnick 2008). According to Carpenter, Franke, and Levi 
(2003, p. 6),

Students who learn to articulate and justify their own mathematical ideas, reason through 
their own and others’ mathematical explanations, and provide a rationale for their answers 
develop a deep understanding that is critical to their future success in mathematics and 
related fields. 

Although discourse provides important opportunities for students to learn what mathematics 
is and how one does it, creating a culture of discourse in the mathematics classroom also 
presents challenges. Teachers must determine how to build on and honor student thinking 
while ensuring that the mathematical ideas at the heart of the lesson remain prominent in 
class discussions (Engle and Conant 2002). For example, in orchestrating a class discussion 
of student approaches to solving a task, the teacher must decide what approaches to share, 
the order in which they should be shared, and the questions that will help students make 
connections among the different strategies and the key disciplinary ideas that are driving the 
lesson. Such discussions can easily become little more than elaborate show-and-tell sessions 
(Wood and Turner-Vorbeck 2001) in which it is not clear what each solution adds to students’ 
developing understanding or how it advances the mathematical storyline of the lesson. Smith 
and Stein (2011) describe five practices for effectively using student responses in whole-class 
discussions: 

1.	 Anticipating student responses prior to the lesson

2.	 Monitoring students’ work on and engagement with the tasks

3.	 Selecting particular students to present their mathematical work

4.	 Sequencing students’ responses in a specific order for discussion

5.	 Connecting different students’ responses and connecting the responses to key  
mathematical ideas

Students must also have opportunities to talk with, respond to, and question one another 
as part of the discourse community, in ways that support the mathematics learning of all 
students in the class. Hufferd-Ackles, Fuson, and Sherin (2004) describe a framework for 
moving toward a classroom community centered on discourse. They examine how teach-
ers and students proceed through levels in shifting from a classroom in which teachers 
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play the leading role in pursuing student mathematical thinking to one in which they assist 
students in taking on important roles. The framework describes growth in five components 
(Hufferd-Ackles, Fuson, and Sherin 2004): 

1.	 How the teacher supports student engagement

2.	 Who serves as the questioner and what kinds of questions are posed

3.	 Who provides what kinds of explanations

4.	 How mathematical representations are used

5.	 How much responsibility students share for the learning of their peers and  
themselves 

Figure 11 shows a table developed by Hufford-Ackles, Fuson, and Sherin (2014) to describe 
the levels of classroom discourse through which teachers and their students advance.

Illustration
Mr. Donnelly and his seventh-grade students are studying proportional relationships and 
their use to solve real-world and mathematical problems. As part of this work, Mr. Donnelly 
wants his students to be able to identify multiplicative relationships between quantities and 
recognize three strategies for solving such problems—scaling up, scale factor, and unit rate. 
He has selected the Candy Jar task, shown in figure 12, for the lesson, since it is aligned with 
his goals, provides opportunities for high-level reasoning, and offers multiple entry points. 
Figure 13 shows Mr. Donnelly’s lesson on the Candy Jar task.

Suppose you have a new candy jar with the same ratio of Jolly 
Ranchers (JR) to jawbreakers (JB) as shown in the picture, but it 
contains 100 Jolly Ranchers. 

How many jawbreakers do you have? 

Justify your answer.

Note: In the picture, Jolly Ranchers are represented by 5 rectangles, and jawbreakers are 
shown by 13 circles.

Fig. 12. The Candy Jar task. Adapted from Smith and colleagues (2005).
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Mr. Donnelly monitors his students as they work in small groups on the Candy Jar task, 
providing support as needed and taking note of their strategies. He notices that students 
who use the scaling up strategy do so in different ways. Some use a table that shows a 
constant increase of 5 Jolly Ranchers and 13 jawbreakers (see solution 1 below), some use 
a ratio table that contains different multiples of 5 and 13, and some even draw pictures of 
candy jars. He decides to have the groups who created solutions 1, 2, and 3, shown below, 
present their work (in this order), since these groups used the strategies that he is targeting 
(i.e., scaling up, scale factor, and unit rate). This sequencing reflects the sophistication and 
frequency of strategies (i.e., most groups used a version of the scaling up strategy, and only 
one group used the unit rate strategy). 

Solution 1. Scaling up reasoning

Student explanation: “I started with 5 Jolly Ranchers (JR) and 13 jawbreakers (JB), and I 
just kept adding on 5 JR and 13 JB every time until I got to 100 JR. Then I saw that I had 
260 JB.”

JR 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

JB 13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 208 221 234 247 260

Solution 2. Scale factor reasoning

Student explanation: “You had to multiply the five Jolly Ranchers by 20 to get 100, so 
you’d also have to multiply the 13 jawbreakers by 20, getting 260.”

(× 20)

5 JR     ⟶   100 JR

13 JB   ⟶   260 JB

(× 20)

Solution 3. Unit rate reasoning

Student explanation: “Since the ratio is 5 Jolly Ranchers (JR) for 13 jawbreakers (JB), you 
could give each JR that you have 2 JB. That would use up 10 of them, and then you still 
have 3 JB that have to be shared. So to distribute the 3 JB to the 5 JR, that would be  
3 ÷ 5 = 0.6 of a JB, so putting that together would give the ratio of 1 JR to 2.6 JB. So 
then you just multiply 100 by 2.6.” 

(× 100)

1 JR     ⟶  100 JR

2.6 JB   ⟶   260 JB

(× 100)

During the discussion, Mr. Donnelly asks the presenters to explain what they did and why, 
and he invites other students to consider whether the approach makes sense and to ask 
questions. He makes a point of labeling each of the three strategies, asking students which 
one is most efficient in solving this particular task, and he poses questions that help stu-
dents make connections among the strategies and with the key ideas that he is targeting. 

Fig. 13. Mr. Donnelly’s implementation of the Candy Jar task.  
Solutions adapted from Smith and colleagues (2005).
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Specifically, he wants students to see that the scale factor is the same as the number of 
entries in the table used for scaling up. In other words, it would take 20 candy jars with 
the same number of Jolly Ranchers and jawbreakers as the original jar to make the new 
candy jar. Mr. Donnelly then will have his students compare this result with the unit rate, 
which is the factor that relates the number of Jolly Ranchers and the number of jawbreakers 
in each column of the table in solution 1 (e.g., 5 × 2.6 = 13, just as 55 × 2.6 = 143, just as 
100 × 2.6 = 260 ). 

Toward the end of the lesson, Mr. Donnelly places the solution shown below as solution 4 
on the document camera in the classroom and asks students to decide whether or not this 
is a viable approach to solving the task and to justify their answers. 

Solution 4. Incorrect additive reasoning

Student explanation: “100 Jolly Ranchers is 95 more than the 5 I started with. So I will 
need 95 more jawbreakers than the 13 I started with.”

5 JR + 95 JR = 100 JR

13 JB + 95 JB = 108 JB

Mr. Donnelly gives the students five minutes to write a response, and he collects their 
responses as they leave the room to go to the next class. He expects their responses 
to give him some insight into whether they are coming to understand that for ratios to 
remain constant, their numerators and denominators must grow at a rate that is multipli-
cative, not additive.

Fig. 13. Continued

Mr. Donnelly keeps close track of what his students are doing as they explore the task 
(monitoring) so that he is positioned to make strategic choices regarding which solutions to 
highlight during the whole-class discussion (selecting) and in what order (sequencing). He 
selects three groups to present their work—each of which used one of the strategies that he 
has targeted in his goal for the lesson. By making deliberate choices about what to focus on 
during the whole-class discussion, he is able to use the discussion time to engage students 
productively in a thoughtful consideration of a small number of approaches and the con-
nections among them (connecting). His decision to end the class by asking students to write 
individual critiques of a response that uses incorrect additive reasoning gives him a way of 
assessing the extent to which his students understand that the relationship between the types 
of candies is multiplicative, not additive. 

Mr. Donnelly facilitates rather than directs the discussion. By building on the work produced 
by students, he positions them as “authors” of the mathematics and engages them in rich 
discourse about an important set of ideas related to ratios and proportional relationships. Al-
though he asks questions and provides information (e.g., labels for the strategies) to ensure that 
the mathematics learning goals are met, he does so in a way that gives the students ownership 
of their learning. Mr. Donnelly is clearly in charge of the lesson, but he offers guidance mostly 
under the radar, so that it does not impinge on students’ growing mathematical authority. 
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Teacher and student actions
Mathematical discourse among students is central to meaningful learning of mathematics. 
Teachers carefully prepare and purposefully facilitate discourse, such as whole-class dis-
cussions that build on student thinking and guide the learning of the class in a productive dis-
ciplinary direction. Students are active members of the discourse community as they explain 
their reasoning and consider the mathematical explanations and strategies of their classmates. 
The actions listed in the table below provide some guidance on what teachers and students do 
as they engage in meaningful discourse in the mathematics classroom.

Facilitate meaningful mathematical discourse
Teacher and student actions

What are teachers doing? What are students doing?

Engaging students in purposeful sharing 
of mathematical ideas, reasoning, and 
approaches, using varied representations.

Selecting and sequencing student 
approaches and solution strategies for 
whole-class analysis and discussion.

Facilitating discourse among students by 
positioning them as authors of ideas, who 
explain and defend their approaches.

Ensuring progress toward mathematical 
goals by making explicit connections to 
student approaches and reasoning.

Presenting and explaining ideas, reason-
ing, and representations to one another 
in pair, small-group, and whole-class 
discourse.

Listening carefully to and critiquing the 
reasoning of peers, using examples to 
support or counterexamples to refute 
arguments. 

Seeking to understand the approach-
es used by peers by asking clarifying 
questions, trying out others’ strategies, 
and describing the approaches used by 
others. 

Identifying how different approaches to 
solving a task are the same and how they 
are different.

Pose Purposeful Questions
Effective teaching of mathematics uses purposeful questions to assess and advance 
students’ reasoning and sense making about important mathematical ideas and  
relationships.

Effective mathematics teaching relies on questions that encourage students to explain and 
reflect on their thinking as an essential component of meaningful mathematical discourse. 
Purposeful questions allow teachers to discern what students know and adapt lessons to meet 
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varied levels of understanding, help students make important mathematical connections, 
and support students in posing their own questions. However, merely asking questions is not 
enough to ensure that students make sense of mathematics and advance their reasoning. Two 
critical issues must be considered—the types of questions that teachers ask and the pattern of 
questioning that they use. 

Discussion
Researchers have created a variety of frameworks to categorize the types of questions that 
teachers ask (e.g., Boaler and Brodie 2004; Chapin and O’Connor 2007). Though the cate-
gories differ across frameworks, commonalities exist among the types of questions. For 
example, the frameworks generally include questions that ask students to recall information, 
as well as questions that ask students to explain their reasoning. Figure 14 displays a set of 
question types that synthesizes key aspects of these frameworks that are particularly import-
ant for mathematics teaching. Although the question types differ with respect to the level of 
thinking required in a response, all of the question types are necessary in the interactions 
among teachers and students. For example, questions that gather information are needed to 
establish what students know, while questions that encourage reflection and justification are 
essential to reveal student reasoning.

Question type Description Examples 

1 Gathering 
information

Students recall facts, defi-
nitions, or procedures.

When you write an equation, what does the 
equal sign tell you?

What is the formula for finding the area of a 
rectangle?

What does the interquartile range indicate 
for a set of data?

2 Probing 
thinking

Students explain, elaborate, 
or clarify their thinking, 
including articulating the 
steps in solution methods 
or the completion of a 
task.

As you drew that number line, what deci-
sions did you make so that you could repre-
sent 7 fourths on it?

Can you show and explain more about how 
you used a table to find the answer to the 
Smartphone Plans task?

It is still not clear how you figured out that 
20 was the scale factor, so can you explain it 
another way?

Fig. 14. A framework for types of questions used in mathematics teaching
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Question type Description Examples 

3 Making the 
mathematics 
visible

Students discuss mathe- 
matical structures and 
make connections among 
mathematical ideas and 
relationships. 

What does your equation have to do with 
the band concert situation?

How does that array relate to multiplication 
and division?

In what ways might the normal distribution 
apply to this situation?

4 Encouraging 
reflection 
and justifica-
tion

Students reveal deeper 
understanding of their 
reasoning and actions, 
including making an ar-
gument for the validity of 
their work.

How might you prove that 51 is the solution?

How do you know that the sum of two odd 
numbers will always be even?

Why does plan A in the Smartphone Plans 
task start out cheaper but become more 
expensive in the long run?

Fig. 14. Continued

While the types of questions that teachers ask are important, so are the patterns of questions 
that they use during teacher-student interactions (Walsh and Sattes 2005). In the Initiate- 
Response-Evaluate (I-R-E) pattern, the teacher starts by asking a question to gather infor-
mation, generally with a specific response in mind; a student responds; and then the teacher 
evaluates the response (Mehan 1979). It is not uncommon for teachers to allocate less than 
five seconds for a student to respond, and to take even less time to consider the answer 
themselves. This pattern of questioning generally affords very limited opportunities for stu-
dents to think and provides teachers with no access to whether or how students are making 
sense of mathematics. Other questioning patterns involve more than asking recall questions. 
Two of these patterns of questioning are funneling and focusing (Herbel-Eisenmann and 
Breyfogle 2005; Wood 1998). 

The funneling pattern of questioning involves using a set of questions to lead students to 
a desired procedure or conclusion, while giving limited attention to student responses that 
veer from the desired path. The teacher has decided on a particular path for the discussion 
to follow and leads the students along that path, not allowing students to make their own 
connections or build their own understanding of the targeted mathematical concepts. The 
I-R-E pattern is closely akin to funneling, though higher-level questions may be part of the 
funneling pattern. 

In contrast, a focusing pattern of questioning involves the teacher in attending to what the 
students are thinking, pressing them to communicate their thoughts clearly, and expecting 
them to reflect on their thoughts and those of their classmates. The teacher who uses this 
pattern of questioning is open to a task being investigated in multiple ways. On the basis of 
content knowledge related to the topic and knowledge of student learning, the teacher plans 
questions and outlines key points that should become salient in the lesson. 
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Illustration
Figure 15 shows two high school teachers’ implementation of the Coin Circulation task in 
their classrooms. They choose the task because it provides an opportunity for students to 
summarize, represent, and interpret data and to further understand and evaluate random pro-
cesses underlying statistical investigations. In particular, students represent data with plots 
on the real number line and interpret differences in shape, center, and spread in the context of 
the data set.

Students in two high school classrooms are investigating how much money it costs to mint 
coins. As part of the investigation, the students decide that it would be helpful to determine 
the approximate number of years that a coin stays in circulation. Rather than studying all dif-
ferent types of coins, the students choose to collect data about the ages of pennies. This sets 
the stage for the students to investigate the question, “How many years does a penny stay in 
circulation?”

The teachers’ mathematics learning goals for the task are for students to collect data, analyze 
the data, and reach a conclusion, as well as to identify the limitations of this investigation with 
respect to its sampling method. Specifically, the teachers want the students to recognize that 
the results do not generalize to a larger population.

Both teachers ask all the students to bring in pennies. The goal for each class is to bring in the 
equivalent of about one roll for every two or three students. Small groups sort their pennies 
by the year of minting and determine the age of each coin. The data from the entire class is 
recorded in a table on the board. The small groups then create dot plots and box plots similar 
to those shown below, based on the age of the coins.

Fig. 15. The Coin Circulation task
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Fig. 15. Continued

Although the task engages the students in both classrooms in reasoning and problem solving, 
the teachers use different questioning patterns. The excerpts from the whole-class discus-
sions shown in figure 16 illustrate the two teachers’ questioning patterns.

Questioning pattern: Funneling Questioning pattern: Focusing

T:	 What do you notice about the graph? 
[waits briefly] Do you see a pattern in 
the data? [waits briefly again] What are 
the measures of center for the pen-
nies?

S1:	 The mean is about 12.9 years, and the 
median is about 9 years.

T: 	 What does the box plot tell us about 
the variability of the data?

S2: 	It has a long tail on one side.

T:  	 That may be true, but what about the 
interquartile range—the IQR? What 
does it tell us?

S3: 	Where most of the pennies occur.

T:  	 Is that really what the IQR tells us? 
What does each part of the box plot 
stand for?

T: 	 What things do you notice or wonder about 
the age of pennies?

S1: 	It doesn’t seem like many of them are very 
old.

T:  	 What about the graph makes you say that?

S1: 	There’s a big mound for newer pennies. 

T:  	 Is there anything else that you notice? 

S2: 	I found the interquartile range and saw that 
most pennies are from 3 to 19 years old.

T:  	 Explain to us what the interquartile range 
tells us.

S2: 	It is where most of the pennies occur.

T: 	 What do you mean by “most of the  
pennies”?

Fig. 16. A comparison of questioning patterns on the Coin Circulation task in two 
classrooms. (T is Teacher, S1 is Student 1, and so on.)

Coin age (years)
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Questioning pattern: Funneling Questioning pattern: Focusing

S4: 	Each part is 25 percent.

T:  	 Yes, so what else?

S5: 	The middle is 50 percent of the pen-
nies and is from 3 to 19 years old.

T:  	 Good. What can we say about pennies 
on the basis of this information?

S6: 	That most of them are about 10 years 
old.

T:	 But since these are pennies, what does 
that tell us about all coins?

S7: 	That coins will be about 10 years old.

T: 	 Well, 10 years is for pennies, but this 
wouldn’t necessarily be the same for, 
say, quarters. Why not?

S2: 	Well, I mean the middle 50 percent. I 
thought the graph made it hard to tell 
where things really were. It doesn’t look nor-
mal, so I couldn’t use the middle 68 percent 
thing we talked about.

T:  	 I’m not sure I understand. Can someone 
else comment on what she’s saying?

S3: 	She means that since there’s a tail, the 
graph isn’t like the normal curves we stud-
ied. If it were, we could approximate where 
the most likely ages are—like 68 percent 
of the data would be within one standard 
deviation of the mean. 

[More discussion follows, and the students 
determine that 75 percent of the pennies are not 
more than 19 years old.]

T: 	 Would I be correct if I said that a fifty-cent 
piece would probably be no more than 19 
years old?

S4:	 Yes, because these coins were a random 
sample, and that means we can generalize.

S5:	 But we looked at pennies, so we can’t 
generalize to quarters. People use pennies 
more.

T:	 What do you mean by that?

S5:	 Pennies may wear out. We don’t know about 
other coins from our sample, because quar-
ters would be a different population.

Fig. 16. Continued

In the funneling example, the teacher wants students to look at the measures of center and 
the dispersion of the data. The dialogue demonstrates a reliance on gathering-of-information 
questions. Some recall of information is necessary so that the teacher knows the baseline 
of the students’ thinking. But questions that probe for understanding need to be part of a 
questioning pattern that advances student reasoning. As this funneling dialogue moves 
forward, the teacher has the students look at the center and spread of the data to draw a 
conclusion and finally asks a higher-level question: “What can we say about pennies on the 
basis of this information?” Because the students have not been given an opportunity to think 
deeply enough about what the data tells them about the circulation of pennies, they can give 
only superficial responses to this question. This example illustrates a far-too-common pat-
tern of questioning, in which the teacher initially uses a probing question but allows little 
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wait time and immediately follows up with questions that become more directed toward 
one particular answer. 

By contrast, the focusing example illustrates how the teacher purposefully blends all four 
types of questions. Some questions have been planned in advance of the lesson, along with 
consideration of possible student responses. Other questions are formulated on the spot, in 
response to student statements and actions during the lesson. Throughout the dialogue, the 
teacher strives to include questions that push students to clarify their ideas and make the 
mathematics visible, with the aim of deepening students’ mathematical understanding in 
alignment with the intended learning goals. 

Teacher and student actions
In effective teaching, teachers use a variety of question types to assess and gather evidence 
of student thinking, including questions that gather information, probe understanding, make 
the mathematics visible, and ask students to reflect on and justify their reasoning. Teachers 
then use patterns of questioning that focus on and extend students’ current ideas to advance 
student understanding and sense making about important mathematical ideas and relation-
ships. The teacher and student actions listed in the table below provide a summary of using 
questions purposefully in the mathematics classroom.

Pose purposeful questions
Teacher and student actions

What are teachers doing? What are students doing?

Advancing student understanding by 
asking questions that build on, but do not 
take over or funnel, student thinking.

Making certain to ask questions that go 
beyond gathering information to probing 
thinking and requiring explanation and 
justification.

Asking intentional questions that make 
the mathematics more visible and 
accessible for student examination and 
discussion.

Allowing sufficient wait time so that  
more students can formulate and offer 
responses.

Expecting to be asked to explain, clarify, 
and elaborate on their thinking.

Thinking carefully about how to present 
their responses to questions clearly, with-
out rushing to respond quickly.

Reflecting on and justifying their reason-
ing, not simply providing answers.

Listening to, commenting on, and  
questioning the contributions of their 
classmates.



Principles to Actions

42 • • •

Build Procedural Fluency  
from Conceptual Understanding 

Effective teaching of mathematics builds fluency with procedures on a foundation  
of conceptual understanding so that students, over time, become skillful in using  
procedures flexibly as they solve contextual and mathematical problems.

Effective mathematics teaching focuses on the development of both conceptual understand-
ing and procedural fluency. Major reports have identified the importance of an integrated 
and balanced development of concepts and procedures in learning mathematics (National 
Mathematics Advisory Panel 2008; National Research Council 2001). Furthermore, NCTM 
(1989, 2000) and CCSSM (NGA Center and CCSSO 2010) emphasize that procedural fluency 
follows and builds on a foundation of conceptual understanding, strategic reasoning, and 
problem solving.

Discussion
When procedures are connected with the underlying concepts, students have better retention 
of the procedures and are more able to apply them in new situations (Fuson, Kalchman, and 
Bransford 2005). Martin (2009, p. 165) describes some of the reasons that fluency depends on 
and extends from conceptual understanding:

To use mathematics effectively, students must be able to do much more than carry out mathe- 
matical procedures. They must know which procedure is appropriate and most productive 
in a given situation, what a procedure accomplishes, and what kind of results to expect. Me-
chanical execution of procedures without understanding their mathematical basis often leads 
to bizarre results. 

Fluency is not a simple idea. Being fluent means that students are able to choose flexibly 
among methods and strategies to solve contextual and mathematical problems, they under-
stand and are able to explain their approaches, and they are able to produce accurate answers 
efficiently. Fluency builds from initial exploration and discussion of number concepts to 
using informal reasoning strategies based on meanings and properties of the operations to 
the eventual use of general methods as tools in solving problems. This sequence is beneficial 
whether students are building toward fluency with single- and multi-digit computation with 
whole numbers or fluency with, for example, fraction operations, proportional relationships, 
measurement formulas, or algebraic procedures.

Computational fluency is strongly related to number sense and involves so much more than 
the conventional view of it encompasses. Developing students’ computational fluency ex-
tends far beyond having students memorize facts or a series of steps unconnected to under-
standing (Baroody 2006; Griffin 2005). A rush to fluency, however, undermines students’ 
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confidence and interest in mathematics and is considered a cause of mathematics anxiety 
(Ashcraft 2002; Ramirez et al. 2013). Further, early work with reasoning strategies is relat-
ed to algebraic reasoning. As students learn how quantities can be taken apart and put back 
together in different ways (i.e., decomposition and composition of numbers), they establish a 
basis for understanding properties of the operations. Students need this early foundation for 
meaningful learning of more formal algebraic concepts and procedures throughout elemen-
tary school and into middle and high school (Carpenter, Franke, and Levi 2003; Griffin 2003; 
Common Core State Standards Writing Team 2011).

In meaningful learning of basic number combinations (i.e., addition and subtraction within 
20 and multiplication and division within 100), students progress through well-documented 
phases toward fluency (Baroody 2006; Baroody, Bajwa, and Eiland 2009; Carpenter et al. 
1999). Students begin by using objects, visual representations, and verbal counting, and then 
they progress to reasoning strategies using number relationships and properties. For example, 
to solve 8 + 4, a first grader might count on from 8 early in the school year, whereas later in 
the year the same student might reason that since 8 + 2 is 10, then 8 + 4 must be 2 more than 
10, or 12. A third grader might initially use repeated addition to solve 4 × 6 and then progress 
to reason that 2 sixes are 12, so 4 sixes must be double that amount, which is 24. This ap-
proach supports students, over time, in knowing, understanding, and being able to use their 
knowledge of number combinations meaningfully in new situations. 

Learning procedures for multi-digit computation needs to build from an understanding of 
their mathematical basis (Fuson and Beckmann 2012/2013; Russell 2000). For example, 
consider the work in figure 17 by David and Anna, two fourth graders, on a multiplication 
problem, 57 × 4 = W , and their explanations of what they have done.

David’s solution

I multiplied 7 and 4 and got 28. I put down the 8 
and carried the 2. Then I added the 2 and the 5 
and got 7 and multiplied it by 4 and got 28. I put 
down the 28 and got 288.

Anna’s solution

I did it in parts. First I multiplied  
4 x 50 and got 200. Then I  
multiplied 4 and 7 and got 28. 
Then I just added those two 
parts together to get the answer.

Fig. 17. David’s and Anna’s solutions to a multiplication problem.  
Adapted from Russell (2000).
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David’s faulty application of the multiplication algorithm leads to an incorrect answer that 
he should have recognized as too large (i.e., a reasonable answer must be less than 4 × 60). 
Anna’s solution, by contrast, shows her understanding that 57 can be partitioned into tens and 
ones, that each quantity can be multiplied by 4 (an application of the distributive property), 
and that those new quantities can then be combined.

Similarly, a high school student who does not understand the distance formula, 

d = (x1 − x2)2 + (y1 − y2)2 ,

may have trouble accurately recalling it and applying it appropriately to problem situations. 
By contrast, a student who understands that the formula is an application of the Pythagorean 
theorem (i.e., the distance between two points can be thought of as the hypotenuse of a right 
triangle) can use an understanding of this underlying relationship to solve a problem involv-
ing the distance between two points correctly (Martin 2009). 

Clearly, students need procedures that they can use with understanding on a broad class of 
problems. This raises questions regarding how students can move most effectively toward 
fluency with general methods or algorithms, as well as what defines an algorithm. Fuson 
and Beckmann (2012/2013) argue that a standard algorithm is defined by its mathematical 
approach and not by the way in which the steps in the approach are recorded. They suggest 
that variations in written notation are not only acceptable but indeed valuable in supporting 
students’ understanding of the base-ten system and properties of the operations. They also 
emphasize the importance of understanding, explaining, and visualizing: “Standard algo-
rithms are to be understood and explained and related to visual models before there is any 
focus on fluency” (p. 28).

For example, as figure 18 illustrates, the conventional algorithm for multi-digit multiplication 
is difficult to understand, whereas the three alternative methods shown are more transparent 
with respect to the central mathematical features of place-value meanings and properties of 
the operations (Fuson 2003). The diagrams show the multiplication of tens and ones and the 
relative size (in area) of the partial products. The accessible algorithm shows a clear record 
of the four pairs of numbers that are multiplied. This progression also supports students in 
establishing a basis from which to apply and extend these understandings to operations with 
rational numbers and algebraic expressions.
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Array model Open array model 

Accessible algorithm Conventional algorithm

Fig. 18. Methods for multi-digit multiplication, using 68 × 46.  
Adapted from Fuson (2003, p. 303).

In moving to fluency, students also need opportunities to rehearse or practice strategies and 
procedures to solidify their knowledge. However, giving students too many practice prob-
lems too soon is an ineffective approach to fluency. Students need opportunities to practice 
on a moderate number of carefully selected problems after they have established a strong 
conceptual foundation and the ability to explain the mathematical basis for a strategy or 
procedure. At that point, providing students with practice on a small number of problems, 
“spacing” or distributing these over time, and including feedback on student performance 
support learning outcomes (Pashler et al. 2007; Rohrer 2009; Rohrer and Taylor 2007). 

Similarly, practice with basic number combinations should occur after students can explain 
and justify their use of efficient reasoning strategies. A word of caution is important in regard 
to timed tests. The premature and overuse of such tests may hinder students’ mathematical 
proficiency and lower their confidence in themselves as learners of mathematics (Boaler 2012; 
Seeley 2009). Practice with basic number combinations should focus on solidifying students’ 

40                +6

60

+8
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use of an efficient strategy for specific number combinations (Rathmell 2005; Thornton 1978). 
Isaacs and Carroll (1999) suggest that practice be brief, engaging, purposeful, and distribut-
ed. For example, practice can target specific strategies, such as making a ten for addition or 
doubling a known fact for multiplication, and can be embedded in problem-solving tasks and 
games (Crespo, Kyriakides, and McGee 2005). 

Illustration
Mr. Donnelly’s use of the lesson featuring the Candy Jar task, illustrated in figure 13, is an 
important step in building his students’ fluency in solving problems that involve proportion-
al relationships. Mr. Donnelly helps his students understand that the ratios need to remain 
constant and that they can use different approaches to preserve this constant multiplicative 
relationship between the numerator and the denominator. Over time, Mr. Donnelly will need 
to discuss the efficiency of some strategies over others (e.g., using the scale factor is usually 
more efficient than scaling up by using a table), and he will need to provide examples of prob-
lems that specific strategies would be particularly useful in solving. Ultimately, Mr. Donnelly 
will want to give his students problems in which neither the unit rate nor the scale factor are 
integers (e.g., 5/13 = 127/x ) and ask students to devise methods for finding the missing value. 
Students might generate either of the approaches shown in figure 19, the scale factor method 
and the unit rate method.

Consider the reasoning that underlies each of these methods and how each is clearly grounded 
in an understanding of ratio concepts and multiplicative relationships. Mr. Donnelly could 
then ask his students to consider the generalizability of these approaches as another step 
toward fluency in solving problems involving proportional relationships.

Teacher and student actions
Effective teaching not only acknowledges the importance of both conceptual understanding 
and procedural fluency but also ensures that the learning of procedures is developed over 
time, on a strong foundation of understanding and the use of student-generated strategies 
in solving problems. This approach supports students in developing the ability to under-
stand and explain their use of procedures, choose flexibly among methods and strategies to 
solve contextual and mathematical problems, and produce accurate answers efficiently. The 
actions identified in the table at the right summarize what teachers and students are doing 
in mathematics classrooms to build procedural fluency from conceptual understanding and 
problem-solving experiences.
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Scale factor method

Student explanation: “The original jar 
contained 5 Jolly Ranchers, but the new jar 
contains 127 Jolly Ranchers, so 5 times some 
number is 127. So, 127 ÷ 5 = 25.4. So, this is 
the factor that I need to use because the new 
jar has to have 25.4 times more Jolly Ranchers. 
Since the original jar had 13 jawbreakers and I 
need to keep the same ratio, I needed to multi-
ply 13 by the same scale factor, so 13 × 25.4 = 
330.2 jawbreakers in the new jar.”

Unit rate method

Student explanation: “The ratio is 5 Jolly 
Ranchers for every 13 jawbreakers, so 5 
times some number is 13. If I distribute the 
13 jawbreakers equally among the 5 Jolly 
Ranchers, 13 ÷ 5 = 2.6, which gives the ratio 
of 1 Jolly Rancher for every 2.6 jawbreakers, 
so 2.6 is the unit rate. Since I have 127 Jolly 
Ranchers, or units, in the new jar, I have to 
multiply this by the unit rate, so 127 × 2.6 = 
330.2 jawbreakers.  

“Well, 330.2 is the exact answer. But since 
jawbreakers have to be whole numbers, the 
answer to problem is 330 jawbreakers.”

Fig. 19. Student approaches to the Candy Jar task, leading to general methods

Build procedural fluency from conceptual understanding
Teacher and student actions

What are teachers doing? What are students doing?

Providing students with opportunities to 
use their own reasoning strategies and 
methods for solving problems.

Asking students to discuss and explain 
why the procedures that they are using 
work to solve particular problems.

Connecting student-generated strategies 
and methods to more efficient procedures 
as appropriate.

Making sure that they understand and 
can explain the mathematical basis for the 
procedures that they are using.

Demonstrating flexible use of strategies 
and methods while reflecting on which 
procedures seem to work best for specific 
types of problems.

Determining whether specific approaches 
generalize to a broad class of problems.
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Build procedural fluency from conceptual understanding
Teacher and student actions, continued

What are teachers doing? What are students doing?

Using visual models to support students’ 
understanding of general methods.

Providing students with opportunities for 
distributed practice of procedures.

Striving to use procedures appropriately 
and efficiently.

Support Productive Struggle in Learning 
Mathematics

Effective teaching of mathematics consistently provides students, individually and 
collectively, with opportunities and supports to engage in productive struggle as they 
grapple with mathematical ideas and relationships.

Effective mathematics teaching supports students in struggling productively as they learn 
mathematics. Such instruction embraces a view of students’ struggles as opportunities for 
delving more deeply into understanding the mathematical structure of problems and relation-
ships among mathematical ideas, instead of simply seeking correct solutions. In contrast to 
productive struggle, unproductive struggle occurs when students “make no progress towards 
sense-making, explaining, or proceeding with a problem or task at hand” (Warshauer 2011,  
p. 21). A focus on student struggle is a necessary component of teaching that supports stu-
dents’ learning of mathematics with understanding (Hiebert and Grouws 2007). Teaching 
that embraces and uses productive struggle leads to long-term benefits, with students more 
able to apply their learning to new problem situations (Kapur 2010). 

Discussion
In comparisons of mathematics teaching in the United States and in high-achieving 
countries, U.S. mathematics instruction has been characterized as rarely asking students 
to think and reason with or about mathematical ideas (Banilower et al. 2006; Hiebert and 
Stigler 2004). Teachers sometimes perceive student frustration or lack of immediate success 
as indicators that they have somehow failed their students. As a result, they jump in to “res-
cue” students by breaking down the task and guiding students step by step through the diffi-
culties. Although well intentioned, such “rescuing” undermines the efforts of students, lowers 
the cognitive demand of the task, and deprives students of opportunities to engage fully in 
making sense of the mathematics (Reinhart 2000; Stein et al. 2009). As teachers plan lessons, 
key components for them to consider are the student struggles and misconceptions that might 
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arise. Thinking about these in advance allows teachers to plan ways to support students pro-
ductively without removing the opportunities for students to develop deeper understanding of 
the mathematics. 

Mathematics classrooms that embrace productive struggle necessitate rethinking on the part 
of both students and teachers. Students must rethink what it means to be a successful learner 
of mathematics, and teachers must rethink what it means to be an effective teacher of mathe-
matics. Figure 20 summarizes one such effort to redefine success in the mathematics class-
room (Smith 2000), including expectations for students in regard to what it means to know 
and do mathematics, and actions for teachers with respect to what they can do to support 
students’ learning, including acknowledging and using struggles as opportunities to learn. 

Expectations for  
students

Teacher actions to  
support students

Classroom-based  
indicators of success

Most tasks that promote 
reasoning and problem 
solving take time to solve, 
and frustration may occur, but 
perseverance in the face of 
initial difficulty is important.

Use tasks that promote rea-
soning and problem solving; 
explicitly encourage students 
to persevere; find ways to 
support students without 
removing all the challenges 
in a task.

Students are engaged in the 
tasks and do not give up. The 
teacher supports students 
when they are “stuck” but 
does so in a way that keeps 
the thinking and reasoning at 
a high level.

Correct solutions are import-
ant, but so is being able to 
explain and discuss how one 
thought about and solved 
particular tasks.

Ask students to explain and 
justify how they solved a 
task. Value the quality of the 
explanation as much as the 
final solution.

Students explain how they 
solved a task and provide 
mathematical justifications for 
their reasoning. 

Everyone has a responsibility 
and an obligation to make 
sense of mathematics by 
asking questions of peers and 
the teacher when he or she 
does not understand.

Give students the opportuni-
ty to discuss and determine 
the validity and appropri-
ateness of strategies and 
solutions.

Students question and cri-
tique the reasoning of their 
peers and reflect on their 
own understanding.

Diagrams, sketches, and 
hands-on materials are im-
portant tools to use in making 
sense of tasks.

Give students access to tools 
that will support their thinking 
processes.

Students are able to use tools 
to solve tasks that they can-
not solve without them.

Communicating about one’s 
thinking during a task makes 
it possible for others to help 
that person make progress on 
the task.

Ask students to explain their 
thinking and pose questions 
that are based on students’ 
reasoning, rather than on the 
way that the teacher is think-
ing about the task.

Students explain their think-
ing about a task to their peers 
and the teacher. The teacher 
asks probing questions based 
on the students’ thinking.

Fig. 20. Redefining student and teacher success. Adapted from Smith (2000, p. 382).
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Teachers greatly influence how students perceive and approach struggle in the mathematics 
classroom. Even young students can learn to value struggle as an expected and natural part 
of learning, as demonstrated by the class motto of one first-grade math class: “If you are not 
struggling, you are not learning” (Carter 2008, p. 136). Teachers must accept that struggle is 
important to students’ learning of mathematics, convey this message to students, and pro-
vide time for them to try to work through their uncertainties. Unfortunately, this may not be 
enough, since some students will still simply shut down in the face of frustration, proclaim 
“I don’t know,” and give up. Dweck (2006) has shown that students with a fixed mindset—
that is, those who believe that intelligence (especially math ability) is an innate trait—are 
more likely to give up when they encounter difficulties because they believe that learning 
mathematics should come naturally. By contrast, students with a growth mindset—that is, 
those who believe that intelligence can be developed through effort—are likely to persevere 
through a struggle because they see challenging work as an opportunity to learn and grow.

The fixed mindset appears to be more prevalent in mathematics than in other subject areas 
(Dweck 2008). Mindsets, however, can be changed when students realize that they are in 
control of how they approach and view their own abilities to learn (Blackwell, Trzesniewski, 
and Dweck 2007). It is important to note that even students who have always gotten good 
grades may have a fixed mindset. These higher-achieving students are often concerned about 
how smart they appear to be, so they prefer tasks that they can already do well and try to 
avoid tasks in which they may make mistakes. Dweck (2008, p. 8) offers important words of 
caution:

For the last few decades many parents and educators have been more interested in making 
students feel good about themselves in math and science than in helping them achieve. Some-
times this may take the form of praising their intelligence or talent and sometimes this may 
take the form of relieving them of the responsibility of doing well, for example, by telling 
them they are not a “math person.” Both of these strategies can promote a fixed mindset.

A key message from this research is that teachers must acknowledge and value students 
for their perseverance and effort in reasoning and sense making in mathematics and must 
provide students with specific descriptive feedback on their progress related to these efforts 
(Clarke 2003; Hattie and Timperley 2007). This behavior by teachers may include giving 
feedback to students that values their efforts at trying varied strategies in solving problems, 
their willingness to ask questions about specific aspects of the task, or their attempts to be 
precise in explanations and use of mathematical language. For example, if students need 
to be more precise in their written or verbal explanations, the teacher could provide feed-
back that details how their explanations either are, or are not, precise. The result will be 
the development of students who are more likely to embrace difficulties and uncertainties 
as natural opportunities in solving problems and maintain engagement and persistence in 
their mathematics learning. (For an example of a warm-up routine that engages students in 
an eighth-grade classroom in productive struggle, view “My Favorite No: Learning from 
Mistakes” [https://www.teachingchannel.org/videos/class-warm-up-routine].)
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Illustration
Figure 21 illustrates how two teachers, Ms. Flahive and Ms. Ramirez, present a real-world 
task related to fractions to two classes of fifth-grade students. In both classrooms, some 
students are immediately at a loss, upset, and vocal about their feeling that they don’t know 
what to do. The two teachers respond to their students’ discomfort in different ways. 

Ms. Flahive and Ms. Ramirez teach fifth grade and plan their lessons collaboratively. Their cur-
rent instructional unit focuses on fractions. They have selected the Shopping Trip task shown 
below because they think it will be accessible to their students yet provoke some struggle 
and challenge, since a solution pathway is not straightforward. The mathematics goal for stu-
dents is to draw on and apply their understanding of how to build non-unit fractions from unit 
fractions and to use visual representations to solve a multi-step word problem:

Shopping Trip Task

Joseph went to the mall with his friends to spend the money that he had received 
for his birthday. When he got home, he had $24 remaining. He had spent 3/5 of his 
birthday money at the mall on video games and food. How much money did he spend? 
How much money had he received for his birthday?

When Ms. Flahive and Ms. Ramirez present the problem in their classrooms, both teachers 
see students struggling to get started. Some students in both classrooms immediately raise 
their hands, saying, “I don’t get it,” or “I don’t know what to do.”

Ms. Flahive is very directive in her response to her students. She tells them to draw a rect-
angle and shows them how to divide it into fifths to represent what Joseph had spent and 
what he had left. She then guides her students step by step until they have labeled each 
one-fifth of the rectangle as worth $12, as shown below. Finally, she tells the students to 
use the information in the diagram to figure out the answers to the questions.

Ms. Ramirez approaches her students’ struggles very differently. After she sees them strug-
gling, she has them stop working on the problem and asks all the students to write down 
two things that they know about the problem and one thing that they wish they knew be-
cause it would help them make progress in solving the problem. Then Ms. Ramirez initiates 
a short class discussion in which several ideas are offered for what to do next. Suggestions 
include drawing a tape diagram or number line showing fifths, or just picking a number, 
such as $50 and proceeding through trial and error. Ms. Ramirez encourages the students 
to consider the various ideas that have been shared as they continue working on the task. 

Fig. 21. Two teachers’ responses to students’ struggles to solve a multi-step  
word problem involving fractions
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Ms. Flahive wants the students to be successful in figuring out the answer, so she begins 
to direct their work. Ms. Ramirez resists the temptation to step in but instead supports the 
students in considering what they know and what they need to figure out. As a result of these 
different approaches by the teachers to supporting struggling students, the students have 
very different opportunities to learn. Ms. Flahive’s students learn that if you struggle and are 
vocal about your confusion, the teacher will ultimately tell you what to do; Ms. Ramirez’s 
students learn that if you struggle and are at an impasse, the teacher will provide some  
assistance—but in the end you have to figure things out for yourself.

Teacher and student actions
Effective mathematics teaching uses students’ struggles as valuable opportunities to deepen 
their understanding of mathematics. Students come to realize that they are capable of doing 
well in mathematics with effort and perseverance in reasoning, sense making, and prob-
lem solving. Teachers provide supports for students, individually and collectively, to work 
through uncertainties as they grapple with representing a mathematical relationship, explain-
ing and justifying their reasoning, or finding a solution strategy for a mathematical problem. 
The table below summarizes teacher and student actions that embrace struggle as a natural 
aspect of learning in the mathematics classroom.

Support productive struggle in learning mathematics
Teacher and student actions

What are teachers doing? What are students doing?

Anticipating what students might struggle 
with during a lesson and being prepared 
to support them productively through the 
struggle.

Giving students time to struggle with 
tasks, and asking questions that scaffold 
students’ thinking without stepping in to 
do the work for them.

Helping students realize that confusion 
and errors are a natural part of learning, 
by facilitating discussions on mistakes, 
misconceptions, and struggles.

Praising students for their efforts in 
making sense of mathematical ideas 
and perseverance in reasoning through 
problems.

Struggling at times with mathematics 
tasks but knowing that breakthroughs of-
ten emerge from confusion and struggle.

Asking questions that are related to the 
sources of their struggles and will help 
them make progress in understanding 
and solving tasks.

Persevering in solving problems and 
realizing that is acceptable to say, “I don’t 
know how to proceed here,” but it is not 
acceptable to give up.

Helping one another without telling their 
classmates what the answer is or how to 
solve the problem.
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Elicit and Use Evidence of Student Thinking
Effective teaching of mathematics uses evidence of student thinking to assess  
progress toward mathematical understanding and to adjust instruction continually 
in ways that support and extend learning.

Effective mathematics teaching elicits evidence of students’ current mathematical understand-
ing and uses it as the basis for making instructional decisions. This attention to both eliciting 
and using evidence is an essential component of formative assessment (Wiliam 2007a). Leahy 
and colleagues (2005) noted that “teachers using assessment for learning continually look for 
ways in which they can generate evidence of student learning, and they use this evidence to 
adapt their instruction to better meet their students’ learning needs” (p. 23). A focus on evi-
dence includes identifying indicators of what is important to notice in students’ mathematical 
thinking, planning for ways to elicit that information, interpreting what the evidence means 
with respect to students’ learning, and then deciding how to respond on the basis of students’ 
understanding (Jacobs, Lamb, and Philipp 2010; Sleep and Boerst 2010; van Es 2010).

Discussion
A focus on evidence begins with a clear understanding of what counts as an indicator of 
students’ mathematical thinking (Chamberlin 2005; Sherin and van Es 2003) and requires 
that teachers attend to more than just whether an answer is or is not correct (Crespo 2000). 
One source for identifying critical indicators of student thinking is learning trajectories 
that describe how students’ mathematical understanding develops over time (Clements and 
Sarama 2004; Sztajn et al. 2012). Another source for defining what counts as evidence is 
common patterns of reasoning that appear in students’ thinking, including common  
difficulties, mistakes, and misconceptions (Swan 2001).

For example, in planning for the task about chairs for the band concert, presented in figure 10, 
Mr. Harris creates a list of key indicators to notice in his students’ work. Specifically, he 
plans to look for strategies that decompose groups or use the distributive property. He also 
plans to listen to learn whether students are precise in using concept-based language in 
discussing their reasoning, such as breaking apart and putting together groups. 

The gathering of evidence should neither be left to chance nor occur sporadically. Prepara-
tion of each lesson needs to include intentional and systematic plans to elicit evidence that 
will provide “a constant stream of information about how student learning is evolving toward 
the desired goal” (Heritage 2008, p. 6). Waiting until the quiz on Friday or the unit test to 
find out whether students are making adequate progress is too late. Rather, it is important 
to identify and address potential learning gaps and misconceptions when it matters most to 
students, which is during instruction, before errors or faulty reasoning becomes consolidated 
and more difficult to remediate.
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Teachers can identify strategic points in each lesson and then plan ways to “check in” on 
student thinking. One approach is to use high-level tasks to reveal students’ thinking and 
reasoning. For example, tasks that require students to explain, represent, and justify math-
ematical understanding and skills provide stronger evidence of their understanding for 
ongoing assessment and instructional decisions. Another approach is to carefully construct 
key questions, prior to teaching, to draw out specific understandings, conceptual gaps, or 
common errors, with the goal of making them visible and accessible for examination and 
discussion (Bray 2013; Swan 2001; Schifter 2001). For example, in the “focusing” pattern of 
questions that figure 16 shows for the Coin Circulation task, the teacher asked, “Would I be 
correct if I said a fifty-cent piece would probably be no more than 19 years old?” The teacher 
has prepared this question to elicit students’ understanding of the relationship between ran-
dom samples and generalizability. The teacher might have also elicited useful evidence from 
more students by having them turn and talk with a partner about the question prior to the 
whole-class discussion or having all the students respond to it in writing and handing in their 
responses for further analysis after the lesson. 

Finally, teachers must consider how to interpret and respond to what students say, draw, 
build, or write, as well as attend to the absence of specific evidence. Jacobs and Ambrose 
(2008) provide several suggestions for ways that teachers might respond to student thinking. 
For example, to support students, teachers can ask students to restate a problem in their own 
words, change the problem to use easier numbers, or, when students are unsuccessful with a 
specific strategy, remind them of other strategies or tools that they have used in the past. To 
extend student thinking, teachers can have students compare and contrast strategies, try a 
more advanced strategy to solve the same problem, or solve similar problems with numbers 
strategically selected to promote more sophisticated strategies. Although there is no single 
best way to respond to student thinking, the response that the teacher gives should be in-
tended to help students deepen their conceptual understanding while moving them forward, 
toward procedural fluency and advanced mathematical reasoning. 

Illustration
Figure 22 illustrates ways in which how Ms. Lewis, a first-grade teacher, elicits and uses 
evidence of student thinking. Having noticed that some students seem unsure of the mean-
ing of the equal sign as a symbol of equality, Ms. Lewis wonders whether this uncertainty 
might be prevalent among her other students as well. Her learning goal for the lesson that the 
figure shows is to help her students understand more clearly that the equal sign indicates that 
quantities or expressions “have the same value.” Ms. Lewis observes her students’ different 
solutions and strategies in their work and probes some of the students’ thinking to learn more 
about their reasoning, and she uses this information to make adjustments to her instruction.

Consider how Ms. Lewis uses the evidence of her students’ thinking throughout the lesson 
to adjust her instruction in ways that support students in engaging in mathematical discourse 
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about equality and the meaning of the equal sign. In particular, notice how Gabe’s thinking 
about the “number of the day” routine influences both the decisions of the teacher and the 
reasoning of the students. Then note how Ms. Lewis uses a writing prompt to gather further 
evidence on what each student understands by the end of the lesson.

Ms. Lewis begins the lesson by asking all the students to work on their own to solve the 
problem 8 + 4 = ☐ + 7. As the students work, she takes note of the different solutions 
and strategies in their work and probes some of the students’ thinking to learn more 
about their reasoning. 

Ms. Lewis notices several different answers, including 12, 5, 19, 11, and 6, so she asks the 
students to find someone in the class with an answer that is different from their own and 
compare and discuss their solutions. The conversation is lively as students wonder how 
there can possibly be so many different answers and whether any of them is even correct. 
Some students even change their answers as a result of their conversations.

After a few minutes, Ms. Lewis asks the students to bring their papers to the rug so that 
they can discuss the work as a class. Ms. Lewis asks Maddie to share her work first (shown 
below on the left). Maddie explains that she didn’t know what to do with the 7. The class 
affirms that the sum of 8 and 4 is 12, and they agree that this fact seems to be an import-
ant thing to know in solving the problem. 

Gabe presents his work next (shown below on the right). He explains that he thought the 
total had to be the same on both sides of the equal sign, so he used his drawing to figure 
out that 5 will make both sides total 12. Ms. Lewis asks him to explain why he thought it 
might be true that both sides have to have the same total. He said that he thought about 
how they sometimes write equations that only have one number on the left, like 5 = 2 + 
3, or when they write the “number of the day” in different ways without using an equal 
sign at all. The teacher asks the other students to comment on these ideas. Alex adds 
that they write the number of the day in different ways to name that number, and he 
suggests that this case might be something like that. Ms. Lewis asks all the students to 
turn and talk with a partner about how this task might relate to their previous work when 
12 was the number of the day.

                                Maddie’s work		                  Gabe’s work

Fig. 22. Ms. Lewis’s eliciting and use of student thinking on  
the meaning of the equal sign
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After some more whole-class discussion, Ms. Lewis asks all the students to return to their 
seats and take out a piece of paper. She asks them to make up a similar problem on their 
own and use it to complete this sentence starter, “The equal sign means that ________ .” 
The students find partners to review their work, then they make revisions to it, and finally 
the teacher collects the work to analyze it further and consider her next instructional 
steps. 

Fig. 22. Continued

Teacher and student actions
Effective teaching involves finding the mathematics in students’ comments and actions, 
considering what students appear to know in light of the intended learning goals and progres-
sion, and determining how to give the best response and support to students on the basis of 
their current understandings. Teachers also use the evidence gathered after the instructional 
session to reflect on the lesson and student progress and then identify next steps in planning 
future lessons and designing interventions. The actions in the table below summarize what 
teachers and students are doing in mathematics classrooms that use evidence of student 
thinking to assess, support, and extend learning. 

Elicit and use evidence of student thinking
Teacher and student actions

What are teachers doing? What are students doing?

Identifying what counts as evidence of stu-
dent progress toward mathematics learning 
goals.

Eliciting and gathering evidence of student 
understanding at strategic points during 
instruction.

Interpreting student thinking to assess 
mathematical understanding, reasoning, 
and methods.

Making in-the-moment decisions on how 
to respond to students with questions and 
prompts that probe, scaffold, and extend.

Reflecting on evidence of student learning 
to inform the planning of next instructional 
steps.

Revealing their mathematical under-
standing, reasoning, and methods in 
written work and classroom discourse.

Reflecting on mistakes and misconcep-
tions to improve their mathematical 
understanding.

Asking questions, responding to, and 
giving suggestions to support the 
learning of their classmates.

Assessing and monitoring their own 
progress toward mathematics learning 
goals and identifying areas in which they 
need to improve.
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Moving to action
Although the important work of teaching is not limited to the eight Mathematics Teaching 
Practices discussed in this chapter, this core set of research-informed practices is offered as 
a framework for strengthening the teaching and learning of mathematics. The next steps in-
volve educators in collectively and collaboratively supporting one another in moving toward 
improved instruction through the lens of these core teaching practices. Effective teaching 
of mathematics begins with teachers clarifying and understanding the mathematics that 
students need to learn and how it develops along learning progressions. The establishment 
of clear goals supports the selection of tasks that promote reasoning and problem solving 
while developing conceptual understanding and procedural fluency. With effective teaching, 
the classroom is rich in mathematical discourse among students in using and making con-
nections among mathematical representations as they compare and analyze varied solution 
strategies. The teacher carefully facilitates this discourse with purposeful questioning. 
Teachers acknowledge the value of productive struggle in learning mathematics, and they 
support students in developing a disposition to persevere in solving problems. They guide 
their teaching and learning interactions by evidence of student thinking so that they can 
assess and advance student reasoning and sense making about important mathematical ideas 
and relationships.




