Engaging in the Mathematical Practices (Look-fors) | Mathematics Practices | | Students: | Teachers: | |---|--|---|--| | ts of mind of a | 1. Make sense of problems and persevere in solving them | ☐ Understand the meaning of the problem and look for entry points to its solution ☐ Analyze information (givens, constrains, relationships, goals) ☐ Make conjectures and plan a solution pathway ☐ Monitor and evaluate the progress and change course as necessary ☐ Check answers to problems and ask, "Does this make sense?" Comments: | ☐ Involve students in rich problem-based tasks that encourage them to persevere in order to reach a solution ☐ Provide opportunities for students to solve problems that have multiple solutions ☐ Encourage students to represent their thinking while problem solving Comments: | | Overarching habits of mind of a productive math thinker | 6. Attend to precision | □ Communicate precisely using clear definitions □ State the meaning of symbols, carefully specifying units of measure, and providing accurate labels □ Calculate accurately and efficiently, expressing numerical answers with a degree of precision □ Provide carefully formulated explanations □ Label accurately when measuring and graphing | □ Emphasize the importance of precise communication by encouraging students to focus on clarity of the definitions, notation, and vocabulary used to convey their reasoning □ Encourage accuracy and efficiency in computation and problembased solutions, expressing numerical answers, data, and/or measurements with a degree of precision appropriate for the context of the problem | | | | Comments: | Comments: | | plaining | 2. Reason
abstractly and
quantitatively | Make sense of quantities and relationships in problem situations Represent abstract situations symbolically and understand the meaning of quantities Create a coherent representation of the problem at hand Consider the units involved Flexibly use properties of operations Comments: | ☐ Facilitate opportunities for students to discuss or use representations to make sense of quantities and their relationships ☐ Encourage the flexible use of properties of operations, objects, and solution strategies when solving problems ☐ Provide opportunities for students to decontextualize (abstract a situation) and/or contextualize (identify referents for symbols involved) the mathematics they are learning | | Ex | | | Comments: | | Reasoning and Explaining | 3. Construct viable arguments and critique the reasoning of others | in constructing arguments Make conjectures and use counterexamples to build a logical progression of statements to explore and support ideas Communicate and defend mathematical reasoning using objects, drawings, diagrams, and/or actions Listen to or read the arguments of others Decide if the arguments of others make sense and ask probing questions to clarify or improve the arguments | □ Provide and orchestrate opportunities for students to listen to the solution strategies of others, discuss alternative solutions, and defend their ideas □ Ask higher-order questions which encourage students to defend their ideas □ Provide prompts that encourage students to think critically about the mathematics they are learning Comments: | | | | Comments: | | ems&tl Project, 2012 * All indicators are not necessary for providing full evidence of practice(s). Each practice may not be evident during every lesson. | Mathematics Practices | | Students: | Teacher(s): | |-----------------------------------|--|--|---| | Jsing Tools | 4. Model with mathematics | □ Apply prior knowledge to solve real world problems □ Identify important quantities and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts, and/or formulas □ Use assumptions and approximations to make a problem simpler □ Check to see if an answer makes sense within the context of a situation and change a model when necessary Comments: | ☐ Use mathematical models appropriate for the focus of the lesson ☐ Encourage student use of developmentally and contentappropriate mathematical models (e.g., variables, equations, coordinate grids) ☐ Remind students that a mathematical model used to represent a problem's solution is 'a work in progress,' and may be revised as needed Comments: | | Modeling and Using Tools | 5. Use appropriate tools strategically | Make sound decisions about the use of specific tools (Examples might include: calculator, concrete models, digital technologies, pencil/paper, ruler, compass, protractor) Use technological tools to visualize the results of assumptions, explore consequences, and compare predications with data Identify relevant external math resources (digital content on a website) and use them to pose or solve problems Use technological tools to explore and deepen understanding of concepts Comments: | ☐ Use appropriate physical and/or digital tools to represent, explore and deepen student understanding ☐ Help students make sound decisions concerning the use of specific tools appropriate for the grade level and content focus of the lesson ☐ Provide access to materials, models, tools and/or technology-based resources that assist students in making conjectures necessary for solving problems Comments: | | Seeing structure and generalizing | 7. Look for and make use of structure | Look for patterns or structure, recognizing that quantities can be represented in different ways Recognize the significance in concepts and models and use the patterns or structure for solving related problems View complicated quantities both as single objects or compositions of several objects and use operations to make sense of problems Comments: | □ Engage students in discussions emphasizing relationships between particular topics within a content domain or across content domains □ Recognize that they quantitative relationships modeled by operations and their properties remain important regardless of the operational focus of a lesson □ Provide activities in which students demonstrate their flexibility in representing mathematics in a number of ways e.g., 76 = (7 x 10) + 6; discussing types of quadrilaterals, etc. Comments: | | | 8. Look for and express regularity in repeated reasoning | Notice repeated calculations and look for general methods and shortcuts □ Continually evaluate the reasonableness of intermediate results (comparing estimates), while attending to details, and make generalizations based on findings Comments: | Engage students in discussion related to repeated reasoning that may occur in a problem's solution Draw attention to the prerequisite steps necessary to consider when solving a problem Urge students to continually evaluate the reasonableness of their results Comments: |