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Geometry diagrams use the visual features of specific drawn objects to convey 
meaning about generic mathematical entities. We examine the semiotic structure of 
these visual features in two parts. One, we conduct a semiotic inquiry to conceptu-
alize geometry diagrams as mathematical texts that comprise choices from different 
semiotic systems. Two, we use the semiotic catalog that results from this inquiry to 
analyze 2,300 diagrams from 22 high school geometry textbooks in which the dates 
of publication span the 20th century. In the first part of the article, we identify axes 
along which the features of geometry diagrams can vary, and in the second part of 
the article, we show the viability of using the semiotic framework to conduct 
empirical studies of diagrams in geometry textbooks.
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Geometry diagrams use the visual features of specific drawn objects to convey 
meaning about generic mathematical entities. In this way, geometry diagrams 
are essentially dual: On the one hand, they are objects that can be described by 
their spatiographical properties (e.g., a straight stroke oriented NW–SE; 
Laborde, 2005); on the other hand, they are signs that represent general concepts 
that have theoretical properties (e.g., a line separating two points; Fischbein, 
1993). That the spatiographical properties of a particular diagram can suggest 
theoretical properties of a geometric figure that might not be provable in general 
has, in part, given rise to what Inglis and Mejía-Ramos (2009) called the 
“common view” (p. 100) of the role of visual representations in mathematical 
arguments. They wrote: “Pictures may be useful heuristic tools which suggest 
ways of understanding proofs, but . . . are nevertheless inappropriate when it 
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comes to . . . providing a proof” (Inglis & Mejía-Ramos, 2009, p. 100).1
Davis (2006) relayed an anecdote (attributed to numerous mathematicians) 

about the algebraic geometer Oscar Zariski that encapsulates this view:

Oscar Zariski (1899–1986) liked pictures. But pictures can be misleading. . . . In 
presenting proofs in class he used to draw little pictures in the corner of the black-
board to help him recapture the heart of the matter, and then erase them rapidly as 
though they were polluting and he were ashamed of having drawn them. (p. 147)

The common view holds that 19th century mathematicians retreated from argu-
ments that relied on diagrams in favor of arguments that were completely 
contained in propositions that could be stated solely with linguistic and logical 
symbols (Barwise & Etchemendy, 1996; Davis, 2006; Greaves, 2002; Inglis & 
Mejía-Ramos, 2009; Miller, 2007). Thus, in his attempt to improve Euclid’s geom-
etry,  Hilbert (1999) included axioms of separation and order that Euclid had 
completely omitted. Such decisions permitted Hilbert to develop a geometry that, 
unlike Euclid’s, did not rely on information conveyed by the diagram (see Grattan-
Guinness, 1998, pp. 566–568).

At roughly the same time mathematicians were developing diagram-free axioms 
for geometry, those concerned with teaching school mathematics were devising 
new strategies for structuring how students interact with geometry diagrams. 
Baker (1902) proposed a notation for what he called automatic diagrams, the use 
of which would allow the student to read “the proposition, the demonstration, and 
the conclusion” (of a proposition and its proof) directly from the diagram (p. 486). 
This automatic system was a standardized set of visual features that included using 
letters from different alphabets (e.g., Greek, Roman) to label different parts of the 
figure (e.g., angles, lines, respectively), different stroke weights to differentiate 
what is given from what is to be proved, and a set of specially defined symbols to 
visually mark the relationships that hold among different parts in the display—for 
example, using a dotted sigmoid line to indicate that two lines are parallel or using 
a small quadrant to indicate a right angle (Baker, 1902). Figure 1 shows an example 
of these different features used in a diagram.

According to Baker’s (1902) scheme, we see in Figure 1 that l, m, and n are the 
given lines because of their labels (middle letters of the alphabet) and thickness 
(heavier stroke). These markings establish theoretical properties: The small quad-
rant between l and n indicates perpendicular lines, and the dotted sigmoid linking  
l and m indicates lines that are parallel. What remains to be proved is that m is also 
perpendicular to n. To this end, a1 (early letter in the alphabet, lighter stroke) has 
been drawn in for demonstration. A is the angle between a1 and n, and because it 
is marked by a dotted quadrant, it is a right angle, meaning that a1 is perpendicular 

1 We do not include this synopsis of the common view of visual representations to endorse this 
view ourselves or to suggest that this view is endorsed by mathematicians, but only to underscore 
that the status of visual representations in mathematical arguments has been fraught throughout 
the 20th century.
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to n. Thus, a1 and m are two straight lines that are perpendicular to the same line 
and are therefore parallel to each other. This means that a1 and m must coincide 
because the parallel through a point to a line is unique, which means that angles 
X and A coincide, and so it is established that n is perpendicular to m. According 
to Baker, this demonstration follows from the visual grammar of the diagram.

Baker’s (1902) proposed scheme for using the visual features of diagrams as the 
means through which geometric properties could be conveyed marked the begin-
ning of an evolution of diagrams in geometry textbooks. The legacy of Baker’s 
program is evident in 20th century geometry textbooks, where colors, styles (e.g., 
dashed versus solid lines), weights (e.g., heavier or lighter strokes), labels, and 
specialized symbols are applied to the parts of a display, using the visual appear-
ance of diagrams to communicate geometric properties. Figure 2 shows a repro-
duction of a diagram that captures the state of the art of some of these features.

Figure 2. Reproduction of a diagram from Merrill Geometry (Foster, Cummins, & 
Yunker, 1987, p. 366), showing variations in visual features. This diagram accompanies 
the statement of the tangent segments theorem: If two segments from the same exterior 
point are tangent to a circle, then they are congruent.

Figure 1. Diagram (Baker, 1902, p. 489) showing the use of automatic notation.



150 Semiotic Structure of Geometry Diagrams

Figure 2 displays different stroke weights (the circumference of circle C is 
lighter than any of the other strokes in the diagram), different colors (in the 
original, the lighter strokes are blue and the darker strokes are red), and symbols 
(small squares to indicate that the tangents are perpendicular to the radii at points 
R and Q; arrows at the ends of PR

 

 and PQ
 

 to establish that they are rays emanating 
from point P ) to visually convey relationships that are represented by the diagram. 
The differences in stroke weight serve to emphasize the segments and rays, and 
differences in color are used to group related parts in the figure: The tangents and 
the circle they are tangent to are colored gray (blue), and the auxiliary segments 
that define triangles one could use to establish the congruence are black (red). The 
diagram in Figure 2 is a static, complete whole, and yet the use of weight, color, 
and symbol alert the viewer to clauses one could use this diagram to make. One 
such clause is the statement that triangles PQC and PRC are congruent. The small 
boxes indicating perpendicularity convey that PQC and PRC are right triangles, 
and the segments grouped by color call attention to what one would use to make 
a hypotenuse-leg congruence argument. Such an argument2 could be discerned 
directly from the diagram, but to do so, one must recognize that its apparent visual 
differences are deliberate, systematic, and meaningful. In short, one must have 
the literacy skills to read an argument from what is visually presented in the 
diagram.

Although experienced teachers know how to effectively and clearly present 
visual information to students (Gal & Linchevski, 2010), the literacy skills neces-
sary to read diagrams are generally not explicitly taught to students (Kress & van 
Leeuwen, 2006). Thus, materials provided for students involve intricate, technical 
visual representations that students are assumed to know (or to be able to figure 
out) how to decode; however, at the same time, materials expected from students 
privilege writing as the expected and dominant mode through which students are 
required to communicate their ideas (Kress & van Leeuwen, 2006). To teach 
students to interact with multisemiotic texts, such as the diagram shown in Figure 
2, scholars have called for explicit visual literacies, especially in technical fields 
like mathematics (Kress & van Leeuwen, 2006).

In the case of geometry, the need for visual literacy is pronounced because 
students can be caught between two extremes for the permissibility of visual 
images in mathematics. “We must have [visual] images; we cannot have [visual] 
images” (Gallison, 2002, p. 323, as cited in O’Halloran, 2005, pp. 129–130). In 
their roles as representatives of the discipline of mathematics (Yackel & Cobb, 
1996), geometry teachers warn students that diagrams can be misleading and that 
proofs cannot depend on the features of a diagram—We cannot have visual images. 
However, in their roles as facilitators of student learning, teachers recognize that 
diagrams are indispensable aids for solving problems (Lampert, 1993) and that 

2 The hypotenuse, PC is congruent to itself, with QC congruent to RC  by virtue of being radii 
of the same circle.
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diagrams help ground the study of abstract geometric objects in particular realiza-
tions that are accessible to students—We must have visual images.

Geometry teachers rely on diagrams to communicate properties of order, inci-
dence, and separation (Herbst, Kosko, & Dimmel, 2013) because a completely 
general treatment of such properties would make the already challenging work of 
learning to write proofs even more difficult for students. For example, in a proof 
about the angle bisectors of a parallelogram, teachers expect the diagram accom-
panying the proof to communicate that a point of intersection for the bisectors 
exists and that it exists wherever (relative to the interior or exterior of the figure) 
it appears to exist based on the figure that is drawn. Exhaustive consideration of 
the different possible cases would require applying axioms of betweenness, 
completeness, or separation as well as (potentially) drawing different diagrams to 
treat different cases or, at the least, stipulating a without-loss-of-generality argu-
ment that establishes the independence of the result from the position (relative to 
the interior or exterior of the figure) of the points of intersection of the angle 
bisectors. Mathematically, these are subtle, nontrivial issues that gave rise to the 
common view of visual representations in mathematical arguments (Inglis & 
Mejía-Ramos, 2009). Yet students are expected to discern these properties from 
some diagrams but not others—for example, whether two segments are congruent 
or two lines are parallel is not something one can deduce from the mere spatio-
graphical appearance of a figure (see Hsu & Silver, 2014).

Even seemingly straightforward actions such as identifying the shared segments 
of adjacent plane figures or naming an angle using the endpoint-vertex-endpoint 
convention can be challenging for students (Gal & Linchevski, 2010). Many 
students struggle to develop their visual intuition in mathematics (Arcavi, 2003; 
Eisenberg, 1991) or learn to dogmatically reject arguments that involve visualiza-
tions in any meaningful way (Inglis & Mejía-Ramos, 2009). Gal and Linchevski 
(2010) argued that theories of visual perception could spur the development of 
didactic strategies that could help students cope with the challenges of visual 
processing in mathematics. A model of visual processing is only part of what is 
needed. Teachers must also be aware of how arrangements of visual resources 
(e.g., dots, strokes, symbols) cohere as diagrammatic texts. Accordingly, we argue 
that a theory of diagrammatic literacy is of equal importance to helping teachers 
develop strategies for teaching students how to read mathematical images.

The research reported here contributes to developing strategies for teaching 
diagrammatic literacy on two fronts. First, drawing on the theory of social semiotics 
(Halliday & Matthiessen, 2004; Lemke, 2003; O’Halloran, 2005; O’Toole, 2011), 
we conducted a semiotic inquiry (van Leeuwen, 2005) of diagrams in geometry 
textbooks. The result of this inquiry was a conceptual framework for describing 
geometry diagrams as mathematical texts that communicate meaning through 
different semiotic systems. Two research questions drove this part of the study:

1. �What visual resources do geometry diagrams use to convey geometric  
properties?
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2. What is the semiotic structure of these resources?

By analogy, the semiotic systems of geometry diagrams identified below are a 
first attempt at creating a classification of the different resources that are available 
when making diagrammatic texts. By explicitly identifying these resources, we 
have described the scope of what could be considered when teaching diagrammatic 
literacy.

Second, we used the semiotic framework we developed to conduct a corpus 
study of 2,300 diagrams that appeared in 22 geometry textbooks from mainstream 
publishers. The dates of publication of these textbooks span the 20th century, 
ranging from 1913 to 2001.3 The primary goal of the corpus study was to examine 
the viability of the semiotic framework as a means for analyzing geometry 
diagrams. In the process of conducting this corpus study, we compiled an archae-
ological record (Donoghue, 2003) of textbook diagrams that gives a glimpse of 
how the literacy demands for reading geometry diagrams have changed during 
the 20th century. In the first section of the article, we report on the iterative devel-
opment of the semiotic framework, and in the second section of the article, we 
report on the corpus study of diagrams in geometry textbooks. We conclude with 
a discussion that situates this work with respect to the more general concern of 
teaching and researching visual literacies in geometry.

Theoretical Framework
Functional Grammar and Semiotic Systems

Our study of geometry diagrams drew on the social semiotic theory known as 
systemic functional linguistics (Halliday & Matthiessen, 2004) and its extensions 
to multimodal texts (Kress & van Leeuwen, 2006; O’Toole, 2011) and social situ-
ations (van Leeuwen, 2005). Systemic functional linguistics is a theory of 
language that links linguistic expression with meanings construed in contexts of 
use. A key theoretical point of a social semiotic inquiry is that a context of use is 
defined broadly as any situation where meaning potentials can be realized through 
the exchange of semiotic resources (O’Halloran, 2005; van Leeuwen, 2005). In 
mathematics education research, systemic functional linguistics and social semi-
otics have been used to examine classroom discourse and conversations among 
teachers (e.g., González & DeJarnette, 2012; Herbel-Eisenmann & Otten, 2011; 
Herbst & Kosko, in press; Kosko & Herbst, 2012; Lemke, 1990; Mesa & Chang, 
2010; Schleppegrell, 2007, 2010; Shreyar, Zolkower, & Pérez, 2010; Zolkower & 
de Freitas, 2012; Zolkower & Shreyar, 2007). Some scholars (e.g., Lemke, 2003; 
Morgan, 2011; O’Halloran, 2005; Pimm, 1987; Tang, 2011) have also used systemic 
functional linguistics to investigate the mathematics curriculum. Our present work 
builds, in particular, on O’Halloran’s (2005) account of the linguistic, symbolic, 
and visual semiotic systems of mathematics.

3 Throughout this article, we refer to these as “20th-century textbooks.”
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The systemic functional perspective originated with Halliday’s conception of 
grammar, whereby he posited that grammar consists of a set of systems (e.g., 
transitivity, mood, conjunction) that offer choices for writers and speakers to 
realize meanings (Halliday & Matthiessen, 2004). These systems allow language 
to fulfill three metafunctions that are simultaneously present in any instance of 
communication. Halliday (1973) used metafunction to distinguish these over-
arching meaning potentials from more specific, immediate purposes or functions 
that language might fulfill, such as the function of giving directions. The 
ideational metafunction constructs experiential and logical meanings (Halliday & 
Matthiessen, 2004; O’Halloran, 2005). The interpersonal metafunction construes 
the relationship between author and reader or between speaker and audience. 
Finally, the textual metafunction organizes language to create coherent messages 
(Halliday & Matthiessen, 2004; O’Halloran, 2005).

The ideational, interpersonal, and textual metafunctions are realized in 
language through choices in different semiotic systems (Halliday & Matthiessen, 
2004). A semiotic system can be represented as a network of choices that show 
the range of values available for a particular semiotic resource (Eggins, 2004). 
Within such networks, choices span the range of possible values for a semiotic 
resource in the system. The choices represented in the networks are not choices 
in the sense of deliberate, conscious choices but rather choices in the sense of a 
mapping of a space of possibilities, as in when one describes the outcome space 
of a random trial in probability. The framework we describe below uses networks 
to represent the choices within different semiotic systems of geometry diagrams. 
Because semiotic systems are the keystone of the linguistics analogy we draw 
upon to analyze geometry diagrams, we foreground this analogy by using systems 
to catalog some of the semiotic resources that regulate a well-known social semi-
otic system, that of traffic flow on roads.

Two general classes of semiotic resources that help coordinate the movements 
of vehicle operators (or pedestrians) are traffic signals and traffic lanes.4 Traffic 
signals communicate (to vehicle operators or pedestrians) when it is appropriate 
to initiate specific movements (e.g., proceed, stop), whereas traffic lanes constrain 
what movements (e.g., move forward, turn left) are available from a given position 
on the road. Wherever roads meet at an intersection, some combination of signals 
and lanes will be used to regulate the flow of traffic. The range of signal and lane 
combinations possible at any intersection can be represented by network diagrams 
for each of these systems, as shown in Figures 3 (signals) and 4 (lanes). Figures 3 
and 4 show different levels (left to right) within the semiotic systems for traffic 
signals and traffic lanes. At the leftmost level, there is a choice between signal and 
no signal (which appear in Figure 4 as designated or non-designated): Either an 
intersection is marked by a traffic signal, or it is not. One of these two conditions 
must hold, and depending on which condition holds there may be additional 

4 Our consideration of traffic signals and traffic lanes is inspired by the classic semiotic example 
of the three-colored traffic light (see Eggins, 2004).
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choices. Because the choice between signal and no signal is an exclusive-or, it is 
represented in the network by a square bracket; inclusive-or choices are repre-
sented by curly brackets. For each of an intersection’s traffic signals, there are 
choices for whether the signal is a traffic sign (e.g., stop, yield) or a traffic light. 
Semiotically, these additional choices are levels of delicacy at which the resources 
in the system can be realized (Halliday & Matthiessen, 2004). There are levels of 
delicacy for the systems of traffic signals and traffic lanes that are not shown in 
the networks in Figures 3 and 4, such as choices for the shape of a light (e.g., arrow-
shaped, circular, or some other shape) or choices for the direction of merging (e.g., 
merging left, merging right, merging from both directions), but the networks as 
shown provide a starting point for making catalogs of the semiotic resources for 
regulating traffic.

Figure 3. A network representing some of the choices in the traffic signal system.

Figure 4. A network representing some of the choices in the traffic lanes system.

These networks also illustrate a key feature of systemic analysis: Although the 
functions of communicating when a driver can move and what directions of move-
ment are available from a given position in the intersection can be separately 
analyzed using the semiotic systems mapped above, it is also the case that roads 
rely on both of these systems in order to regulate traffic most effectively. 
Furthermore, particular choices within the lane and signal systems can  
simultaneously fulfill different traffic regulation functions—for example, a green 
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arrow communicates both turn now and turn left, and an onramp communicates 
both merge right and merge now. That a single text (in this case, a traffic intersec-
tion) may be analyzed using multiple semiotic systems and that these systems may 
fulfill different communication functions are key theoretical precepts we used to 
build a framework for analyzing geometry diagrams.

Semiotics and Geometry
The semiotic perspective sketched above has been used to look specifically at 

the forms of communication within mathematics. Scholars have argued that math-
ematical communication employs various semiotic systems to make meanings, in 
particular language, symbols, and visuals (Lemke, 2003; O’Halloran, 2005). 
O’Halloran (2005) defined diagrams as one such system, using diagram in the 
broadest sense to include “Venn diagrams, geometrical figures and other figures 
such as those found in graph theory and topology” (p. 133). She presented a 
systemic functional framework for analyzing all visual communication in math-
ematics to provide a grammar of mathematical visual images. Our contribution 
draws from O’Halloran but drills deeper into the specifics of one kind of visual 
image. The semiotic framework described below applies specifically to geometry 
diagrams, which we operationally define as the two-dimensional visual represen-
tations that accompany problems (e.g., proof problems, find problems, determine 
problems) in plane geometry.

Geometry diagrams are a distinct mode of mathematical communication. 
Building on the work of Duval (2006) and Pimm (1987), Weiss and Herbst (2007) 
argued that geometry diagrams are part of what they call the diagrammatic register
(see also Herbst et al., 2013). They noted that through the use of various graphical 
resources (including representations of geometric objects and markup symbols), 
the diagrammatic register anchors abstract concepts and their relationships to 
realizations of those concepts in particular pictorial objects Thus, one may use 
specific parts of a diagram to make general claims about the geometric concepts 
those parts represent (see also Herbst, 2004).

That geometry diagrams are multisemiotic and that the multiple semiotic func-
tions geometry diagrams can fulfill affect how students use geometry diagrams 
to solve problems has been a recurrent theme of research on geometry diagrams 
(Duval, 1995; Fischbein, 1993; Herbst, 2004; Laborde, 2005). Laborde (2005) drew 
a distinction between spatiographical versus theoretical properties of a diagram. 
A geometric figure can be defined as a set of points that satisfy some given prop-
erties (e.g., an isosceles triangle ABC with sides 
A geometric figure can be defined as a set of points that satisfy some given prop-A geometric figure can be defined as a set of points that satisfy some given prop-

AB BCand  congruent), and a 
geometry diagram can be used as a visual representation of such a figure. As a 
representation, the diagram displays the properties that define the figure (e.g., the 
strokes for 
representation, the diagram displays the properties that define the figure (e.g., the representation, the diagram displays the properties that define the figure (e.g., the 

AB BCand  are the same length), the theoretical properties of the 
diagram. However, the diagram also has other properties that are not necessitated 
by the definition of the figure but rather depend on the features of a particular 
diagram—for example, the stroke for side AC,  is either longer, shorter, or just as 
long as the other two, but only one of these possibilities is the case in the diagram 
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drawn. That is an example of a spatiographical property (Laborde, 2005). 
According to Laborde (2005), diagrams support the reading of spatiographical 
and theoretical properties, and these readings may even contradict each other. 
Diagrams are thus ambiguous representations of sets of geometric objects and 
their relations (see also Parzysz, 1988).

 Laborde’s (2005) distinction between spatiographical and theoretical properties 
of a diagram is related to Fischbein’s (1993) theory of figural concepts as well as 
to Herbst’s (2004) distinction between different modes of interacting with 
diagrams. Fischbein argued that the objects of geometry—points, lines, planes—
are juxtapositions of abstract concepts (i.e., “the mental entities with which the 
mathematician deals,” p. 141) and materialized models of those concepts. There 
is a material thing that a mathematician uses as a reference when contemplating 
the objects in geometry, but those geometric objects ultimately “do not exist . . . 
in reality” (Fischbein, 1993, p. 141). According to Fischbein, a figural concept is 
the terminus of a cognitive limiting process that fuses these two modalities—the 
logical structure of the concept and the spatial properties of its materialized 
models—of geometric objects. Fischbein remarked that achieving this fusion often 
proves difficult for students and noted several cases in which students could state 
theorems about abstract concepts yet did not fully grasp the generality of what 
they knew to be true.

Herbst (2004) argued that the different semiotic resources within the diagram-
matic register allow for different modes of interacting with diagrams—different 
ways that a student (or other actor) may operate on the objects in a diagram in 
order to make claims about the geometric objects the diagram represents. For 
example, in the empirical mode of interaction, a student acts on a diagram by 
looking at it, measuring its different parts, or drawing on it, “only constrained by 
the actual features of the physical drawing and the operational constraints of the 
physical instruments of interaction” (Herbst, 2004, p. 130). In the generative mode 
of interacting with diagrams, the student acts on the diagram by constructing new 
objects, labeling points, and otherwise using it as a physical model that might 
suggest possibilities of theoretical properties that could be true about the figure it 
represents (see Herbst, 2004 for an elaboration of other modes of interacting with 
diagrams).

An undercurrent of Fischbein’s (1993), Herbst’s (2004), and Laborde’s (2005) 
inquiries into how geometric objects relate to geometry diagrams is that geometry 
diagrams can realize multiple meaning potentials simultaneously. By virtue of 
this simultaneity, modeling the semiotic structure of geometry diagrams using the 
systemic functional approach provides theoretical resources through which these 
different meaning potentials can be systematized and analyzed. The work 
described below to characterize geometry diagrams from a semiotic perspective 
conceptualizes visual images as coherent semiotic systems in which differences 
in visual features are purposeful and exist to convey particular meanings to 
viewers (Kress & van Leeuwen, 2006; O’Toole, 2011). Our approach complements 
the interest that other mathematics education researchers and cognitive scientists 
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have taken in the role that diagrams play in geometric thinking and learning (e.g., 
Butcher, 2006; Christou, Mousoulides, Pittalis, & Pitta-Pantazi, 2004; Clements 
& Battista, 1992, 2001; Gal & Linchevski, 2010; Koedinger & Anderson, 1990; 
Larkin & Simon, 1987; Moore-Russo, Viglietti, Chiu, & Bateman, 2013; 
Zimmermann & Cunningham, 1991). In particular, our approach complements 
work by Alshwaikh (2010, 2011) that examined geometry diagrams using social 
semiotics.

Alshwaikh (2010, 2011) drew on work by O’Halloran (2005) to describe the 
ideational (which he broke down into narrative and conceptual), interpersonal, 
and textual metafunctions of diagrams. He provided detailed qualitative analyses 
of numerous examples to illustrate how diagrams realize these metafunctions. 
Alshwaikh’s (2010, 2011) analysis of diagrams is linked to our research through 
the systemic functional perspective; however, our work pursues a different 
analytic strategy. We organize our analysis of geometry diagrams by systems of 
semiotic choice and use these systems to conduct an inventory of the choices that 
are realized in diagrams in different textbooks.

A Semiotic Catalog for Geometry Diagrams
We developed a semiotic catalog for geometry diagrams via the method of a 

semiotic inquiry (van Leeuwen, 1999, 2005). Van Leeuwen (2005) described the 
work of conducting such an investigation as collecting, documenting, and system-
ically classifying the resources that are available for making meanings in partic-
ular texts (p. 3). In the case of the present inquiry, the texts in question were 
geometry diagrams, and the organization of the catalog was tailored to answer 
three questions:

• �What are the possible ways in which geometry diagrams may visually differ 
from one another?

• �What visual resources do geometry diagrams use to convey geometric properties?
• What is the semiotic structure of these resources?

We developed the semiotic catalog by examining diagrams in 20th-century 
geometry textbooks that were published by mainstream publishers, including text-
books from the Macmillan, McGraw-Hill, Merrill, Glencoe, and Ginn and Company 
publishing houses. The method of developing the catalog was iterative (Alshwaikh, 
2011; van Leeuwen, 1999, 2005) in that after a classification scheme was initially 
proposed, the corpus of textbooks was searched to find diagrams that had features 
that were not accounted for in the scheme. After such features were discovered, the 
semiotic catalog was revised to account for these new possibilities, and the corpus 
was once again examined for diagrams that would challenge the current iteration of 
the catalog. This process was continued until all of the differences in diagrams we 
encountered in the corpus could be captured with existing choices (or by adding 
subchoices) in the systems. In total, diagrams from 22 textbooks—the earliest 
published in 1913, the latest published in 2001—were examined to develop the 
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structure and categories in the catalog described below. The earliest books in the 
sample are from 1913 because it was not normative for geometry textbooks to include 
proving exercises for students to do until after 1910 (Herbst, 2002). The textbook 
published in 2001 was the upper limit because it was a typical example of a main-
stream textbook that was in use in geometry classrooms at the time the study was 
conducted. In order to build the semiotic catalog, we surveyed the textbooks in the 
corpus holistically to ensure that the framework we developed could account for the 
widest possible range of visual variation in diagrams.

The categories in the systems and subsystems within the semiotic catalog 
reported below were built on theoretical footings laid by researchers working in 
social semiotics. In what follows, we elaborate on these theoretical connections 
as we report the findings of the semiotic inquiry. The results of the inquiry are 
presented via annotated networks that catalog the semiotic resources of geometry 
diagrams as choices in four functional semiotic systems. We identified these as 
the Type, Position, Prominence, and Attributes systems. The annotations of each 
network describe the rationale for the system and draw explicit analogies to 
systems in functional grammar. Additionally, we consider how the Type, Position, 
Prominence, and Attributes systems of geometry diagrams convey visual analogs 
of the ideational (visually: representational or experiential), interpersonal, and 
textual (visually: compositional) metafunctions of texts (Alshwaikh, 2011; 
O’Halloran, 2005).

For the purpose of this analysis, the parts of a geometry diagram are graphical 
analogs of morphemes in written language (von Engelhardt, 2002). In geometry 
diagrams, there are parts that represent geometric objects (e.g., dots, strokes, 
regions) and parts that represent geometric or other mathematical properties (e.g., 
symbols for congruence, symbols for movement). The Type system organizes these 
visual parts into a network of systemic choices.

The Type system. The Type system takes stock of the visual parts of a diagram. 
Figure 5 is a representation of some of the choices in the Type system.

Stroke refers to the parts of a diagram that can represent lines, line segments, 
and rays (straight strokes) or curves (non-straight strokes). A key element of the 
literacy necessary to accurately read a diagram is that different geometric objects 
can be realized by parts that are visually similar. In some cases, the kind of 
geometric object that is represented by a stroke is tacitly conveyed by the visual 
relationships of the parts in the display, such as reading the strokes that make up 
a three-sided plane figure as segments (as opposed to lines or rays). In other cases, 
arrows may be applied to one or both ends of a stroke to indicate what kind of 
geometric object is being represented, such as when endpoint arrows are added to 
a stroke to show that it represents a line. The semantic function of such endpoint 
arrows is described in the Attributes system.

Region refers to parts of a diagram that can represent planes (unlimited), plane 
figures (totally limited) and angles or half-planes (partially limited). Even though 
some regions in diagrams can be described by the strokes that comprise their 
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boundaries, we include region as a separate choice in the Type system to provide 
a means for referring to regions without needing to resolve them into their constit-
uent parts. This helps to accommodate a range of different diagrammatic texts 
that can be constructed from the same set of visual building blocks. An example 
of a totally limited region {region: limited: totally limited} would be a diagram of 
a polygon, but an example of a partially limited region {region: limited: partially 
limited} would be an angle.

Dot is the visual category that corresponds to geometric points. The dot-alone/
dot-on distinction captures the visual differences between dots that are visually 
independent5 of other parts (e.g., a dot that appears on its own to represent a point 
in some limited or unlimited region) and dots that are used to visually mark 
specific locations on other parts (e.g., a dot on a stroke to represent a point on a 
line or a dot that appears on several strokes to indicate the places where two or 
more strokes intersect). Figure 6 shows an example of some of the different choices 
for dots and regions.

Concluding the first level of the Type system, symbols are those units of a 
diagram that (a) provide resources for making statements about (or with) the 
geometric objects a diagram represents or (b) convey the geometric relationships 

Figure 5. A network representing the initial levels (stroke, region, dot, symbol) and some 
additional levels (e.g., straight, dot on, partially limited) of the Type system. This system 
accounts for the visual units of a geometry diagram.

5 This visual independence refers to how a dot in a diagram appears and does not necessarily 
align with the geometric freedom (in the sense of Netz, 1998) of the point that a dot represents.
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or operations that are realized by a diagram. Alphabetical and numerical symbols 
include labels (e.g., Greek or Latin letters applied to dots or strokes, as in the labels 
A, E, and F applied to the dots in Figure 6; numbers applied to partially limited 
regions) and captions, but mathematical symbols (e.g., small squares to mark right 
angles, arrows to indicate a rotation, construction traces, or algebraic operations 
that are nested within labels) are the resources through which geometric properties 
and mathematical operations are communicated by the diagram.

Figure 6. A dot alone in a partially limited region (point E, in the interior of angle 
GAF), a dot on a single stroke (point F, lying on AF ) and a dot on multiple strokes  
(point A, at the intersection of AF and GA ).

Through choices in the Type system, geometry diagrams realize what 
O’Halloran (2005) called the compositional metafunction: the visual analog of the 
textual metafunction that signals to a viewer how a visual image coheres as a 
meaningful text. For example, an arrangement of four strokes in a regular, four-
sided figure with unlettered corners accompanied by a label that says “square” 
cues a diagrammatically literate viewer to read the diagram as a representation of 
a whole figure (in this case, a square) as opposed to a collection of independent 
parts. Alternatively, three individually lettered dots appearing on a stroke that has 
its own label is a cue that the diagram is a representation of the relationships among 
its parts (in this case, it could be the potential betweenness relations that hold 
among the lettered dots).

The possibilities for Type shown in Figure 5 are not exhaustive but rather indi-
cate the first-level choices within this system. From those initial choices, it would 
be possible to chart more delicate choices within the Type system as well as expand 
the choices to include diagrammatic texts in other mathematical domains. For 
instance, one could elaborate more choices within the category of non-straight 
strokes {strokes: non-straight} by considering different types of non-straight 
strokes. The initial levels of the Type system shown in Figure 5 provide a frame-
work that could be extended as necessary to analyze diagrams.

In addition to carrying compositional meaning, the Type system also carries 
representational (O’Halloran, 2005) meaning: the visual analog of ideational 
meaning in language. That is, even in the absence of special markup signs—
described below as diagrammatic Attributes—strokes, dots, and regions are 
sufficient to convey relationships that hold among the different geometric objects 
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that are represented in a diagram. Properties like incidence, order, separation, 
betweenness, or adjacency relations have a long history of being represented in 
diagrams solely through different configurations of the available visual parts 
(Manders, 2008). Analyzing changes in how the representational metafunction is 
realized through the Type system was not a focus of this study, but we note that 
this would be an area for further research.

The Position system. The Position system captures how the parts of a geometry 
diagram relate to each other spatially (i.e., how parts are located relative to one 
another and how those parts are oriented relative to the frame of reference of the 
page). Figure 7 shows a representation of some of the choices in the Position 
system.

Figure 7. A network representing some of choices in the Position system. Both distance 
and orientation would be measured relative to a frame of reference (e.g., the page on 
which the diagram appears, the center of the diagram).

The choices in the first level of the Position system are relative to a frame of 
reference (e.g., radial, rectangular). Distance refers to the space between parts, 
and orientation refers to the heading (e.g., compass angle) of a part in the diagram 
relative to a set of reference axes. Although the network representation of the 
Position system shown in Figure 7 depicts both nearer and farther as well as 
aligned and askew as discrete choices, these are more like the names for extremes 
of continua (i.e., parametric systems; see van Leeuwen, 2009) with intermediate 
choices available as needed, which are represented in the network by vertical 
arrows (van Leeuwen, 1999).

The orientation of geometric figures and how changes in orientation influence 
the perception of a figure has been of interest to psychologists (e.g., Attneave, 
1968; Driver, Baylis, Goodrich, & Rafal, 1994; Palmer, 1980; Rock, 1973), math-
ematics education researchers (e.g., Clements & Battista, 1989), and philosophers 
of mathematics (e.g., Giaquinto, 1992). Palmer’s (1980) work on the directions in 
which different types of triangles and groups of equilateral triangles point suggests 
that how the parts of the visual display are oriented relative to one another and to 
the reference axis of the page has some effect on how objects are perceived, a 
finding that is echoed by Clements and Battista’s (1989) account of some children’s 
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conceptions of angle being linked to the orientation (with respect to the page) of 
otherwise visually identical objects—for example, for some children, a vertical 
line is not an angle, but a diagonal line is.

Changes in the orientation of a diagram can affect what a diagram represents. 
An example is the difference between a square and a diamond (Giaquinto, 1992). 
A square and a diamond have the same types of parts arranged in the same way 
(so, compositionally, they both cue the reader to read the visual strokes as repre-
senting some complete whole as opposed to a collection of independent parts), but 
one is oriented to align with the axes of the page, and the other is offset from 
alignment with these axes by a quarter turn (see Figure 8). That the orientation of 
a figure affects how a diagram of a figure is read suggests that the Position system, 
like the Type system, provides a set of choices for realizing the compositional 
metafunction of geometry diagrams. That the Position system carries the visual 
analog of the textual metafunction is consistent with O’Halloran (2005), who 
stated that the spatial proximity (distance) and arrangement (including orientation) 
of the different parts of a mathematical visual image are markers that realize the 
compositional (i.e., textual) metafunction.

Figure 8. A square and diamond differ only in orientation.

The Prominence system. From O’Halloran’s (2005) multimodal study of math-
ematical discourse, we initially had reason to believe that geometry diagrams 
would have a system for conveying varying degrees of visual emphasis to different 
parts of the diagram—a carrier of the interpersonal metafunction that O’Halloran 
described as the prominence of a mathematical image in the display pane. This 
led us to consider having a system for prominence as one of the systems in the 
catalog for geometry diagrams.

The Prominence system describes the visual presence of a part in the display 
(O’Halloran, 2005). The Prominence system has two subsystems: Emphasis and 
Difference. The Emphasis subsystem conveys the visual salience of a part through 
choices for weight (strokes), gauge (dots), and transparency (regions). The 
Difference subsystem conveys membership in different categories through 
variations in color (all parts), pattern (regions), fill (dots), style (strokes), and font 
effects (symbols). Thus, diagrammatic units that are given equal salience can be 
distinguished as belonging to different categories through choices in style 
(dashed, dotted, etc.) for strokes, fill (solid, cross-hatched, empty) for dots, 
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different colors, or different patterns of shading (solid, checkered, striped, etc.) for 
regions. Figures 9 and 10 show representations of some of the choices within the 
Prominence system for geometry diagrams. Figures 11 and 12 show diagrams that 
realize choices in the Emphasis and Difference systems. The diagram in Figure 11 
shows variations in gauge and fill that visually mark different points. Figure 12 
shows a diagram in which variations in color and weight group related strokes.

Figure 9. A network representing some of the choices in the Emphasis subsystem of the 
Prominence system {Prominence: Emphasis}, which offers choices for making some 
parts of the display stand out from others, for instance by giving a stroke a heavier 
weight.

Figure 10. A network representing some of the choices in the Difference subsystem of 
the Prominence system {Prominence: Difference}, which offers choices for visually 
differentiating parts of the display, for instance by color-coding parts that have some 
shared property.
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In Figure 11, points E, F, D, C, and M are made visually distinct from points 
A and B by the fact that these points are marked by a dot that has nonzero gauge. 
Within the equally emphasized set of points (E, F, D, C, M), there are differences 
that are marked by choices in fill: Point M is filled in with a cross-hatch style, but 
points E, D, C, and F are open. In Figure 12, circle C (Figure 12b) is given less 
emphasis relative to strokes PQ PR PC, ,PR, ,PR and  by virtue of its lighter weight, yet it 
is linked to PQ PRand —while also being set apart from PC —through choices 
in color.

In Foster, Cummins, and Yunker’s (1987) Merrill Geometry, blue is the default 
color choice for given strokes; other colors (orange, red, purple) are used to mark 
auxiliary or otherwise special lines. This suggests that PC,  (colored darker in 
Figure 12b) is an auxiliary line. Contrast this to the way parts are made visually 
salient in in Wentworth and Smith’s (1913) Plane Geometry. In this text, solid 
strokes were typical, and the dashed style was used to mark auxiliary lines. The 
radii in Figure 12a OB OA( and )  are marked as different from the other strokes 

(a)   A diagram from Wentworth and 
Smith’s (1913) Plane Geometry 
(p. 107).

(b)  Reproduction of a diagram from 
Merrill Geometry (Foster et al., 1987, 
p. 366).

Figure 11. Diagram showing different gauges for points (Henderson, 1920, p. 23). In 
the figure, A and B differ from E, F, D, C, and M in gauge, and M differs from E, D, C, 
and F with respect to fill. Here, the fact that point M is filled with a cross-hatch style 
indicates that it was the point that was to be constructed.

Figure 12. Diagrams showing variation in both the Emphasis and Difference subsys-
tems of Prominence.
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through a choice in style (dashed), suggesting that the radii are the auxiliary lines 
in this diagram.

These examples show that the Prominence system can indicate how the different 
parts of the diagram could be used when writing proofs or completing tasks. Other 
uses of Prominence include applying heavier stroke weights to parts that are given, 
as in Baker’s (1902) scheme, or emphasizing particular points by marking them 
with dots. Gal and Linchevski (2010) described teachers’ intuitive uses of heavier 
stroke weights as a resource for highlighting the important segments of a diagram, 
such as those that are shared by several plane figures.

The use of Prominence helps to structure a viewer’s visual interaction with the 
diagram. When diagrams have parts that are differentiated by heavier strokes, 
dashed strokes, different colors, or marked points, these variations can commu-
nicate the visual analogs of the imperative (“look here”), interrogative (“will this 
help?”), and declarative (“this is important”) mood, which are some of the 
linguistic resources for realizing the interpersonal metafunction (Lam & Webster, 
2009).

The Attributes system. The Attributes system is a collection of symbols 
through which a diagram may explicitly (and directly) convey the geometric prop-
erties of the objects it represents. Figure 13 shows a representation of some of the 
choices in this system.

Figure 13. A network representing some of the choices in the Attributes system.

Attributes can be relational, existential, or operational. These distinctions draw 
an analogy to the system of Transitivity in lexicogrammar (Halliday & Matthiessen, 
2004). At its most basic unit, a clause can be divided into three parts (process, 
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participants, and circumstances), which “are organized in configurations that 
provide the models or schemata for construing our experience of what goes on” 
(Halliday & Matthiessen, 2004, p. 175). The Transitivity system has choices for 
different process types, and through these choices, the experiential metafunction 
of a text is construed. Experiential meaning concerns statements about things in 
the world, from concrete things like trees and water to abstract things like thoughts 
and feelings. Different types of processes (e.g., material, mental, relational) are 
chosen to convey the experiential meaning about different types of things (Eggins, 
2004).

The Attributes system has choices through which diagrams visually realize 
analogs of relational and existential processes. Relational processes characterize 
and identify. In the case of geometry diagrams, relational processes are realized 
through markings, measures, and nominal labels. These resources identify and 
classify relations that hold among specific parts of a diagram.

Relational markings are the symbols that convey geometric properties when 
they are applied to parts in the geometry diagram. This set of symbols includes 
the small squares (i.e., quadrants) that indicate right angles, small arcs that indicate 
congruent angles, hash marks that indicate congruent segments, and sets of arrows 
that indicate sets of parallel lines. These markings are resources through which 
the diagram directly communicates geometric properties without any supporting 
literal or symbolic statements. Thus, an angle marked by a quadrant is a right 
angle, regardless of whether it is visually perceived as a right angle (see Gal & 
Linchevski, 2010). We refer to relational markings as geometric diacriticals 
because they signal geometric properties of objects in diagrams analogously to 
the way that diacritical markings (e.g., accents, tildes, umlauts) signal phonetic 
properties of letters in words.

Measures are the characters (including numerals, letters, and symbols that 
abbreviate units of measure) that are used to indicate quantity in diagrams. 
Angular measures could be in degrees, radians, revolutions, or other units that 
describe the amount of rotation of a ray around a reference axis. Linear measures 
could be in terms of meters, feet, or the units of any other distance metric. Other 
measures would capture anything not covered by linear or angular measures (e.g., 
counts of the number of points of intersection between different geometric 
objects). Measures are relational attributes in that they classify quantitative having 
or being relationships (Eggins, 2004) among the parts in the display. For example, 
the linear measures of any two segments in a diagram convey that each segment 
has the indicated measure, while at the same time classifying segments as relating 
to each other by virtue of being equal, when the measures are the same, or being 
unequal, when the measures are different.

Nominal labels are resources through which diagrams identify geometric objects 
that are represented in the diagram. Labels for strokes are generally lowercase 
letters (script letters for lines or rays, plain letters for segments or arcs), labels for 
regions (e.g., angles) are generally numerals but could also be Greek letters, and 
labels for dots are generally capital letters. Using different conventions for labeling 
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different types of parts helps to provide clear referents for labels without having to 
add additional marks (e.g., arrows, brackets) that anchor labels to what they are 
labeling. Nominal labels are thereby a resource through which visual realizations 
of dots, strokes, and regions may be identified as points, lines, and planes.

Complementing relational attributes are existential attributes. Existential
processes are those “by which phenomena of all kinds are simply recognized to 
‘be’” (Halliday & Matthiessen, 2004, p. 171). Like their linguistic analogs, exis-
tential attributes of the diagrammatic register stipulate the existence of a part in 
a diagram. Arrows serve as existential attributes when they are applied to the ends 
of straight strokes, as a means of stipulating that a given straight stroke is a line 
(two arrows) or a ray (one arrow). Construction traces serve as existential attributes 
that stipulate the existence of points on which a construction protocol depends.

In addition to existential and relational processes, O’Halloran (2005) defined 
an operative process type that is specific to mathematical discourse. Operative 
processes are realized either by dedicated symbols like + or by lexical elements 
of the mathematical register (e.g., words that in mathematics mean an operation, 
such as plus, added to, along with, put together, etc.). The operational attributes 
identified in Figure 13 realize operative processes in geometry diagrams, such as 
when angles or segments are labeled with algebraic expressions (e.g., 4x + 3 and 
2x + 7) in geometric calculation problems (i.e., those in which students are asked 
to find measures of angles or sides of a figure after solving for x; see Hsu, 2010; 
Hsu & Silver, 2014). Operative processes are also present in diagrams through 
arrows that are used to mark rotations or other movements.

There are further choices within the Attributes system that are not shown in 
Figure 13. For example, the other category under markings could have choices for 
symbols such as exclamation points or question marks—resources that are used 
in some textbooks to differentiate information that is given from that which is to 
be proved (see Moise & Downs, 1982). Figures 14 and 15 provide examples of the 
different ways that Attributes can be applied to diagrams.

The labels on the ends of the strokes in Figure 14 are sufficient to stipulate the 
existence of points, even in the absence of other visual signs such as dots. In Figure 
15, four distinct angles are identified by way of the labels 1, 2, 3, and 4. 
Furthermore, these labels provide the only resources for unambiguously refer-
encing these angles because the strokes in between AB and BC as well as ′ ′A B′ ′A B′ ′
and ′ ′B C′ ′B C′ ′ do not have labels at one of their ends.

The semiotic systems of geometry diagrams. We have described four systems 
of geometry diagrams and explored their connections to the ideational (represen-
tational and experiential), interpersonal, and textual (compositional) metafunc-
tions. Figure 16 shows a network representation of all four systems and their 
first-level choices.

The current study considers realizations of diagrams in geometry textbooks. 
However, we contend that the semiotic treatment we propose could be used as a 
basis to develop a broader framework that could describe semiotic interactions 
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Figure 14. Diagram from Wells and Hart’s (1915) Plane Geometry (p. 19).

Figure 15. Diagram from Schultze and Sevenoak’s (1913) Plane Geometry (p. 18). Here, 
the numbers 1, 2, 3, 4 provide resources for referring to the angles independently of their 
component points and rays.

Figure 16. Network of the four systems in the semiotic catalog for geometry diagrams.
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with other geometry diagrams, such as diagrams produced using different tools—
for example, diagrams drawn freehand, with constructions tools, or using dynamic 
geometry software such as GeoGebra (Hohenwarter & Preiner, 2007)—by 
teachers and students in classrooms. In textbook diagrams, Prominence is realized 
through the use of different visual accents to highlight key features of a diagram, 
such as heavier (thicker) stroke weights. At the chalkboard, this emphasis function 
might be more naturally fulfilled using metadiagrammatic markings, such as 
circling the key part of a diagram, or through changes in the tone or volume of 
one’s voice when referring to that part of the diagram (van Leeuwen, 1999). In 
either case, a semiotic resource (circling, volume) is used to deliver the emphasis, 
carrying the interpersonal message “pay attention: this part of the diagram is 
important.” This is not to suggest that such a multimodal expansion of the systems 
we have proposed would be automatic or trivial but only to highlight that the 
possibility of such an expansion would be consistent with other multimodal exten-
sions of social semiotics (Alshwaikh, 2011; Jewitt & Kress, 2003; Kress, 2010; 
O’Halloran, 2008). We now turn to reporting on how we used the semiotic catalog 
described above to conduct a semiotic inventory of diagrams from 20th-century 
geometry textbooks.

A Semiotic Inventory of Diagrams in 20th-Century Geometry Textbooks
Textbooks are enduring representations of school mathematics that provide 

stable, analyzable records of mathematics curriculum. Because “no direct 
evidence of what was taught in the nation’s classrooms of the past is available” 
(Baker et al., 2010, p. 385), it has been relatively common in mathematics educa-
tion to analyze textbooks to document historical changes in the curriculum (e.g., 
Baker et al., 2010; Fujita & Jones, 2003; Herbst, 2002; Van Sickle, 2011). The 
diagrams in geometry textbooks published at different times are thus partial 
records of the intended curriculum (Mesa, 2004) that provide a “critical link 
between the intended and attained curriculum” (Thompson, Senk, & Johnson, 
2012, p. 254).

The semiotic catalog that we describe in the first part of the article suggests 
dimensions along which visual differences in geometry diagrams could be 
empirically studied. Because the presence or absence of particular visual features 
in a diagram—for example, the use of different colors; the use of symbols to mark 
properties; the presence of different types of labels—constrain how a diagram-
matic text conveys meaning, tracking differences in these visual features across 
textbooks provides a gauge of how the diagrams in geometry textbooks have 
changed, as texts, over time. Furthermore, if the choices that we identify in the 
semiotic systems of the diagrammatic register were analytically viable as a means 
to chart trends in the apparent visual differences in a corpus of textbook diagrams, 
it would lend credence to our claim that the semiotic catalog we developed is a 
useful theoretical framework for analyzing geometry diagrams as visual texts.

The general purpose of the empirical part of the study (i.e., the corpus study) 
was to determine the usefulness of the semiotic catalog for geometry diagrams as 
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a framework for conducting empirical analyses. The specific goal of the corpus 
study was to chart how diagrams in geometry textbooks have changed as visual 
texts over the course of the 20th century. The research question that motivated the 
corpus study was: How have diagrams in geometry textbooks evolved as texts 
during the 20th century?

A Method for Inventorying the Semiotic Resources of Geometry Diagrams
To study the realizations of semiotic systems in 20th-century geometry text-

books, we developed an inventory scheme that operationalizes the semiotic catalog 
for geometry diagrams described in part 1. The unit of analysis for the coding was 
a diagram, and the different inventory codes indicate the presence (1) or absence 
(0) of specific visual qualities realized in the diagrams in the corpus. We made the 
semiotic catalog operational by using the Type system (compositional metafunc-
tion) to identify the parts of a diagram to which choices in the Promience and 
Attributes systems applied. Through the Prominence and Attributes systems, 
diagrammatic texts convey both experiential or representational (Attributes) and 
interpersonal (Prominence) meanings directly to a viewer. We did not undertake 
a large-scale inventory of choices in the Position system because the sheer volume 
of parts to code—and their distances and orientations to measure—per diagram 
made such work infeasible, though examing how changes in the Position system 
affect the meaning potentials in diagrams is a direction for further study.

The inventory scheme consisted of two classes of codes. The first class of codes 
included indexing and diagram metadata—for example, references to locate a 
diagram within a textbook as well as information about the section in the textbook 
in which the diagram appeared (e.g., What unit, subunit, or section did the diagram 
appear in?). The indexing scheme used page numbers and left–right, top–down 
position to index the diagrams in a given textbook: On a given page, the top/left-
most diagram was indexed as “p.1” (where “p” is the page number), and the next 
top/left-most diagram was indexed as “p.2” (e.g., 41.2), continuing until every 
diagram on the page was entered into the index for that textbook. Other metadata 
that were recorded about each diagram were the unit, subunit, or section in which 
it appeared, according to how that section was defined in a textbook. The purpose 
of gathering diagram metadata was to enable comparisons across textbooks using 
the metadata as a control.

The second class of codes inventoried the use of resources from the Prominence 
and Attributes systems. We developed a coding scheme that in principle spanned 
the choices in the semiotic catalog for the Prominence and Attributes systems, but 
in practice only a subset of the choices were realized in diagrams in the corpus 
that we analyzed for this study. The use of the Prominence system in geometry 
diagrams was investigated with codes that track variations in the use of weight, 
style, and color within the parts of a diagram. The use of the Attributes system in 
geometry diagrams was investigated with codes that track the use of relational 
markings and labels. The codes within the Prominence and Attributes systems 
and their interrater reliabilities are explained in the next sections.
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Coding for Prominence. The use of the Prominence system in geometry 
diagrams was investigated by coding for differences in the weights, styles, and 
colors of the strokes that appear in diagrams. The other choices in the Prominence 
system identified in Figures 9 and 10 were present in the inventory scheme but 
were rarely realized in the diagrams in the corpus study. For Prominence, a feature 
was marked as present in a diagram if the diagram contained at least two parts 
that varied their use of that feature (e.g., a diagram that had one solid line and one 
dotted line would be coded as a 1 for style). Figure 17 shows examples of diagrams 
that feature different uses of prominence.

Coding for Attributes. For the Attributes aspect of the corpus study, we inven-
toried how diagrams in the corpus used nominal labels (e.g., labels for points, lines, 
angles, or other labels) and relational markings (the symbols that indicate congru-
ence, perpendicularity, and parallelism) as a means of tracking the different types 
of relational clauses (Halliday & Matthiessen, 2004) that are realized in 

(a) Diagram showing no variation in 
Prominence. This diagram would be 
coded (0) for all Prominence categories 
(from Wentworth & Smith, 1913, p. 40).

(b) Diagram showing variation in style—
strokes
(b) Diagram showing variation in style—(b) Diagram showing variation in style—(b) Diagram showing variation in style—

AG CG BC, ,CG, ,CG and are dashed, but 
the other strokes are solid. This diagram 
would be coded as (1) for style (Wells & 
Hart, 1915, p. 39).

(c) Diagram showing variation in 
weight—strokes
(c) Diagram showing variation in (c) Diagram showing variation in (c) Diagram showing variation in 

AP AB BQ, , and are 
heavier than the other strokes in the 
display. This diagram would be coded (1) 
for weight (from Smith, 1923, p. 35).

(d) Diagram showing variation in color 
and style—
(d) Diagram showing variation in color 

DCstroke is dashed and red, 
but the other strokes are solid and blue. 
This diagram would be coded (1) for both 
color and style (drawn according to 
Schultz, Ellis, Hollowell, Kennedy, & 
Holt, 2004, p. 237).

Figure 17. Diagrams showing variation in choices from the Prominence system.



172 Semiotic Structure of Geometry Diagrams

diagrammatic texts. In language, relational clauses identify or classify. Identifying
relational clauses have the form “a is the identity of x” (Halliday & Matthiessen, 
2004, p. 216) and are reversible—for example, “Sarah is the leader; the leader is 
Sarah” (p. 216)—but classifying relational processes have the form “a is an attri-
bute of x” (p. 216) and are not reversible—for example, “Sarah is wise” (p. 216).

In geometry diagrams, the presence of a label applied to a part in the display 
may be seen as a visual identifying process that has the form “(this part) is an 
x”—where “x” is a point, line, angle, or other geometric object, depending on the 
visual qualities of the part or label. The presence of different kinds of relational 
markings in a diagram likewise may be seen as visual classifying processes that 
take the form “(these parts) are x”—where “x” is congruent, perpendicular, or 
parallel, depending on the visual qualities of the marks. Thus, the choices under 
nominal labels and relational markings in the Attributes system provide means 
for describing the visual clause-making potentials of a diagram.

Within the category of labels, there are labeled points; unlabeled points; and 
labels for angles, strokes (including curved strokes like arcs), and regions (e.g., a 
plane). We coded for labels in a diagram using dichotomous codes that indicated 
whether an object was accompanied by a label. There were two groups of codes: 
those that applied to points and those that applied to strokes, angles, and regions. 
Points were a special case because we coded for the presence of both labeled and 
unlabeled points in a diagram; for other parts, only the existence of special labels 
was recorded. To avoid trivializing the unlabeled point code, an unlabeled point 
was defined as an unlabeled intersection of two or more strokes (e.g., the unlabeled 
intersections in parts (a) and (b) of Figure 19). Both labeled and unlabeled points 
were coded because letters on points allow one to refer to parts other than points. 
Figure 18 provides an illustration of this.

Figure 18. Reproduction of diagram from Merrill Geometry (Foster et al., 1987, p. 348), 
showing a line that can be referenced using different labeling resources.

In Figure 18, one could refer to the line that intersects the circle as “line AB ” 
or as “line m.” The labels for A and B also allow the identification of rays AB  and 
BA
 

 and one could even use A and B to name major (AB(AB( )
 also allow the identification of rays 

 
and minor (BA(BA( )

 also allow the identification of rays 

 
arcs of 

circle C or to refer to segments AC  and BC that are not marked by strokes. The 
presence of labeled points in Figure 18 highlights the utility of labeled points for 
identifying the geometric objects in a diagram. However, the potential to use 
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points to identify different types of objects presents a challenge for inventory 
coding: If a line is identifiable only by naming two points it contains, is the line 
labeled or unlabeled? Identifying such lines as labeled would mean, essentially, 
that any diagram with labeled points would have labeled lines, but identifying such 
lines as unlabeled would create a deficiency where there really is none. The same 
challenge exists for segments, rays, arcs, angles, or other objects that can be iden-
tified by naming a sequence of points. An alternative is simply to note when a 
diagram makes use of dedicated labels to refer to one of its parts—such as the use 
of the letter m to label the line in Figure 18—while also coding for the presence 
of labeled and unlabeled points. Taking stock of dedicated labels avoids trivial-
izing when a diagram has other labeled parts without departing from traditional 
labeling practices. Therefore, this is what we chose to do.

Within the category of markings, there are codes for marked properties, 
unmarked properties, and diagrammatically marked properties. We define marked 
properties to be those properties that satisfy three conditions:

• Condition A: The property is given by a statement (through words or symbols) 
that accompanies the diagram—such as the statements of what is given that can 
accompany diagrams for proof problems.

• Condition B: There is a geometric diacritical through which that property is able 

Given: l m⊥l m⊥ Given: α β∠ ∠α β∠ ∠α βα β,α βα β∠ ∠α β,α β∠ ∠α β  are supplementary

(a)  The property that l and m are perpendic-
ular is an unmarked property.

(b)  The property that angles α and β are 
supplementary is a nonmarkable property. 

Given: ≅AB CD

(c)  The property that segment AB is 
congruent to segment CD is a marked 
property

(d)  The property that l is parallel to m is a 
diagrammatically marked property

Figure 19. Diagrams that illustrate the difference between unmarked (a), nonmark-
able (b), marked (c), and diagrammatically marked (d) properties.
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to be marked in a diagram (e.g., hash marks that indicate congruence, arrows that 
indicate parallelism).6

• Condition C: The given property is marked in the diagram.

We define unmarked properties to be those properties that satisfy Conditions A 
and B but not Condition C: It is a property that is stated (through words or symbols) 
as holding in the diagram and for which there is a geometric diacritical that could 
be used to mark it, but this marking is absent from the diagram. Unmarked prop-
erties are distinct from what we call nonmarkable properties—those properties 
that satisfy Condition A but not Condition B. Nonmarkable properties are proper-
ties for which there is no geometric diacritical that marks when the property holds 
in a diagram. That two angles are adjacent angles is an example of a nonmarkable 
property. Finally, we define diagrammatically marked properties to be those prop-
erties that satisfy Conditions B and C but not Condition A—theoretical properties 
of geometric figures that are conveyed solely through geometric diacriticals. 
Figure 19 illustrates the differences between unmarked, nonmarkable, marked, 
and diagrammatically marked properties of diagrams.7

The conditions of being unmarked (n), marked (m), or diagrammatically marked 
(d ) apply to congruent angles, right angles, congruent segments, and parallel 
lines—the properties for which there are geometric diacriticals that can be applied 
to the parts of the display to indicate that these properties hold in a diagram. 
Because the unit of analysis is a diagram, these geometric objects were inventoried 
using dichotomous ordered triples. Using an ordered triple of dichotomous 
codes—where n, m, and d can each take the value of 0 or 1, depending on the 
absence or presence of a part with that property in a diagram—allowed us to 
distinguish different realizations of marked, unmarked, and diagrammatically 
marked properties within the same diagram. For example, a diagram could have 
more than one right angle. Each right angle would either be unmarked, marked, 
or diagrammatically marked, and applying the n, m, and d codes dichotomously 
across the diagram would record the different cases of how the property of being 
a right angle is realized.

Reliability of the Inventory Scheme
Two coders tested the reliability of the inventory scheme. For this reliability 

testing, coders were provided with a coding manual that (a) defined each code in 

6 We note that, throughout the 20th century, different textbooks have used different conventions 
for diacritical markings. For example, Smith (1923) used sets of hash marks on single arcs, rather 
than sets of arcs, to indicate congruent angles. We do not undertake an analysis of the differences 
in marking systems across textbooks for this study but raise this as a possibility for future research.

7 The distinctions we have made between kinds of properties describe a particular state of affairs 
in the way of drawing diagrams in American geometry textbooks. One could imagine other pos-
sibilities for drawing diagrams that would not lead to these distinctions, and in fact there are formal 
diagrammatic geometries in which, for instance, all geometric properties are conveyed diagram-
matically. See Miller (2001, 2007) for an example.
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the scheme and (b) illustrated each code with examples and nonexamples. The 
coders used the scheme to code 20 diagrams as a way of calibrating their applica-
tion of the codes in the scheme. During this calibration phase, any disagreements 
about the application of a code were discussed until resolved. After the calibration 
was finished, the coders used the scheme to independently code 48 randomly 
sampled diagrams from 10 randomly sampled textbooks.8 Table 1 reports the 
resulting reliability statistics (Cohen’s Kappa) for these codes.

Table 1
Reliability Statistics (Cohen’s Kappa) for Markings (1.1–1.3), Labels (2.1–2.3), and 
Prominence (2.1–2.4) Codes

Code κ

1.1: Right angles [m(0,1), n(0,1), d(0,1)] .65

1.2: Congruent angles (nonright) [m(0,1), n(0,1,), d(0,1)] .74

1.3: Congruent segments [m(0,1), n(0,1) d(0,1)] .74 

2.1: Labeled points (0,1) .89

2.2: Unlabeled points (0,1) .89

2.3: Other labels (e.g., angles, strokes, planes) (0,1) .78

3.1: Weight (0,1) .67

3.2: Color (0,1) .86

3.3: Style (0,1) 1.00

Note. For each of these codes, m, n, and d are “marked,” “nonmarked,” and “diagram-
matically marked.”

The Kappa statistics for the codes reported in Table 1 range from .65 to .89, 
indicating interrater reliabilities that range from “moderate” to “almost perfect” 
(Muñoz & Bangdiwala, 1997). The Prominence code for shade (0,1) that applies 
to regions and the Attributes code for parallelism [n(0,1), m(0,1), d(0,1)] that applies 
to strokes are not reported in Table 1. These codes exhibited, respectively, perfect 
(1.00) and near perfect (.96) agreement between coders; however, these high rates 
of agreement did not differ from the agreement expected by chance—meaning 
their Kappa statistics are 0. These codes exhibited high rates of chance agreement 
because almost all of the diagrams in the reliability study sample were recognized 
by both coders to be in the (0,0,0) category for parallelism (46 of 48 diagrams) and 
the (0,0) category for shade (48 of 48 diagrams). The categories in the scheme were 
defined to capture the widest possible range of variation in diagrams, yet the 
possibility of a difference does not entail the actuality of that difference. Thus, the 
null Kappa statistics are artifacts of the sample of diagrams used in the reliability 

8 These textbooks were a randomly sampled subset of the 22 textbooks in the corpus (see Table 3).
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study (i.e., diagrams that exhibited variation in style or the use of parallelism 
markings were rare in the sample) rather than indictments of the codes (Cicchetti 
& Feinstein, 1990).

Data Sources
We applied the inventory scheme to 20th-century geometry textbooks. 

Twenty-two geometry textbooks from major publishing houses were selected for 
analysis: 10 of the textbooks were from post 1950; 12 of the textbooks were from 
before 1950. To control for the variation in content from textbook to textbook, we 
inventoried diagrams from each textbook that were listed under chapters, units, 
or sections that covered triangles, triangle congruence, and proofs involving 
triangles. We chose diagrams about triangles because the geometry of the triangle 
is a canonical subject for which theoretical development was comparable across 
the textbooks in the sample—for example, there was a set of postulates, defini-
tions, and theorems about triangles that were common to each textbook in the set. 
Selecting content for analysis from a standard unit of the typical curriculum is a 
rationale that has been used in prior investigations of historical changes in text-
books (Lee, 2010). Table 2 lists the textbooks in the sample, sorted by year, with 
totals and descriptive statistics for the number of diagrams analyzed in each 
textbook.

Data Analysis and Results
The inventory scheme9 generated data that could be used to describe trends in 

how diagrammatic texts were visually realized in the textbooks we analyzed. 
Because we conceptualized observable differences in the visual features of geom-
etry diagrams as variations in semiotic choice and coded these differences as they 
presented in different geometry textbooks, it is reasonable to analyze the inventory 
data using techniques from corpus linguistics in which lexical or grammatical 
elements of text corpora are tallied, absolute and relative frequencies of occurrence 
are calculated, and statistical testing is used to identify significant relationships 
(Chotimongkol & Rudnicky, 2001; Gries, 2010; Pagel, Atkinson, & Meade, 2007).

To control for the fact that newer textbooks, in general, have more diagrams 
than older textbooks, we normalized the inventory codes across the sample of 
textbooks by calculating the percentage of diagrams that realized choices in the 
Prominence and Attributes systems. In the next sections, we describe the variables 
that were derived from the inventory codes and report Pearson’s correlation coef-
ficients between these variables and date of textbook publication.

Analysis of the Prominence system. To gauge how geometry diagrams realize 
the interpersonal metafunction, we tracked variations in weight, style, and color 
in diagrams throughout the textbooks in the corpus using the codes for Prominence 

9 See the Appendix for examples of coded diagrams.
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defined above. We normalized these tallies into percentages of diagrams (per 
textbook) that showed variations in weight, style, and color.10 Figure 20 shows 
scatter plots of each of these variables and year of publication for the textbooks in 
the corpus. There was a significant positive correlation (r (20) = .713, p < .001) 
between the percentage of diagrams showing variation in color and textbook year, 
indicating that, as year of publication increased, the diagrams in the corpus 
increasingly exhibited variations in color. There was a significant negative corre-
lation between year of publication and the percentage of diagrams showing varia-
tion in style (r (20) = -.745, p < .001) and no significant correlation between year 
of publication and percentage of diagrams showing variations in weight. Together, 
these correlations suggest that, as year of publication increased, variations in color 
played a larger role (compared to style and weight) in realizing the interpersonal 
metafunction of diagrammatic texts. O’Halloran (2005) argued that color is used 

10 We also inventoried for the use of shade; however, the percentage of diagrams displaying  
shading in each book was less than .025.

Figure 20. (a) Percentage of diagrams showing variation in style over textbook year,  
(b) percentage of diagrams showing variation in weight over textbook year, and  
(c) percentage of diagrams showing variation in color over textbook year.

(a) (b)

(c)
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in mathematical visual images as a resource for drawing and directing a viewer’s 
attention, a claim echoed by Gal and Linchevski (2010) in their analysis of student 
perceptual difficulties with diagrams. Gal and Linchevski identified color—along 
with variations in line thickness (i.e., weight)—as a resource that can help students 
identify parts of a diagram that are similar to each other, such as segments in a 
diagram that are shared by multiple plane figures or parts in a diagram that are 
congruent (Alshwaikh, 2011; Lin, 2005).

Diagram coloring has “been used intuitively in the teaching of geometry for 
years” (Gal & Linchevski, 2010, p. 171). The greater availability of color as a 
resource for creating diagrams in textbooks over the last half of the 20th century 
(LaSpina, 1998; Woodward, 1993) is a move toward bringing the intuitive prac-
tices of coloring diagrams into the written record of the curriculum. Still, teaching 
students to use color as a resource when creating or reading diagrams and helping 
teachers to make explicit the intuitive strategies they employ for using color to 
represent related parts of a diagram are open challenges for mathematics educa-
tors. Gal and Linchevski (2010) argue that a visual-processing perspective on the 
role that color plays in how diagrams are perceived is a step toward providing such 
professional instruction. We would add that a semiotic perspective, such as the 
one that we have provided, on the ways that color can be used as a resource for 
guiding and directing a viewer’s attention also provides an essential scaffold for 
such instruction.

Analysis of the Attributes system. The Attributes system provides semiotic 
resources through which diagrams can visually declare the geometric relationships 
they represent. The relationships between the parts of a diagram are realized 
through identifying and classifying relational processes. We tracked the potential 
for diagrammatic identifying clauses by coding for the presence of labeled points, 
unlabeled points, and other types of labels, and we tracked the potential for 
diagrammatic classifying clauses by coding for unmarked, marked, and diagram-
matically marked properties.

How labels are used in diagrams in geometry textbooks. Labels provide 
resources that facilitate naming and referencing parts of a diagram. A labeled part, 
such as numerals (e.g., 1, 2, 3) for angles, identifies to viewers that the labeled part 
is a visual realization of a specific geometric object. Thus, labels are semiotic 
resources that give rise to identifying relational processes in diagrammatic texts. 
Diagrams that have different types of labeling resources (e.g., those for points, 
lines, planes, and angles) provide more choices for making identifying clauses in 
which the participants are geometric objects. For example, a diagram with both 
labeled points and labeled lines enables clauses that identify lines either by using 
their dedicated labels or by using the labels of points that are on the line.

We defined three classes of diagrams from the inventory codes for labels: those 
in which all of a diagram’s points are labeled, those in which none of its points are 
labeled, and those that contain only other labels (e.g., labels for angles, strokes, or 
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regions but no labels for points). Diagrams that have all of their points labeled 
would allow a viewer to specifically reference any geometric object in the visual 
display (i.e., all points, lines, segments, planes, plane figures, arcs, or angles could 
be identified by sequences of labeled points). In effect, labeled points can be used 
to reference specific geometric objects without resorting to gesturing or to posi-
tional or conceptual language (e.g., top segment and base angles, respectively). By 
contrast, diagrams that have none of their points labeled require viewers to use 
concepts (e.g., the base angles), other resources (e.g., gestures), or other labels (e.g., 
labeled angles) to reference the geometric objects the diagram represents. Finally, 
diagrams that only have other labels are those diagrams that do not have any 
labeled points yet provide other labels for identifying objects in the display (e.g., 
labels for angles, labels for lines). Figure 21 shows scatter plots of percentages of 
diagrams in a textbook in each of these classes of diagrams against year of publi-
cation for the textbooks in the corpus.

As year of publication increased, there was a significant increase in the 

Figure 21. (a) Percentage of diagrams with all points labeled over textbook year,  
(b) percentage of diagrams with no points labeled over textbook year, and  
(c) percentage of diagrams with only other labels over textbook year.

(a) (b)

(c)
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percentage of diagrams that did not have labels for any of their points  
(r (20) = .57, p = .005), as well as a significant increase in the percentage of diagrams 
that only had labels for geometric objects that are not points (r (20) = .46, p = .02). 
This suggests that labeled points played a lesser role as resources that realize iden-
tifying relational processes in diagrams in later 20th century geometry textbooks. 
It is also the case that textbooks that had higher percentages of diagrams with no 
points labeled had lower percentages of diagrams with all points labeled  
(r (20) = -.84, p < .001). Finally, textbooks that had higher percentages of diagrams 
with only other labels had higher percentages of diagrams with no points labeled 
(r (20) = .83, p < .001) and lower percentages of diagrams with all points labeled  
(r (20) = -.72, p < .001). These correlations provide further evidence that in early 
20th century geometry textbooks, labeled points were the primary resources for 
identifying the geometric objects represented in a diagram, but in later 20th century 
textbooks, other labeling resources were increasingly common.

One possible reason for the gradual move away from points as the principal 
resources that realize identifying processes is to streamline references to the objects 
in a diagram. This rationale was articulated by Baker (1902) as one motivation for 
his system of automatic diagrams: “Under the current system, the student is bewil-
dered by the wilderness of letters . . . his energies are taxed . . . in trying to disen-
tangle the mass of letters and in finding what concept they are intended to 
symbolize” (p. 486). Baker went on to describe this method of identifying 
geometric objects as the “needle-in-the-haystack” (p. 486) method of communi-
cating with diagrams. He argued that, “if the concept could be symbolized by a 
single letter instead of by three, the labor of perception with its accompanying 
recognitions and judgments would be greatly reduced” (p. 486).

Along these lines, researchers have more recently argued that using three letters 
to identify an angle introduces the possibility of a conflict between verbal and 
pictorial representations—that is, applying top-down, left-right conventions for 
reading to the task of naming angles (Gal & Linchevski, 2010). In instances where 
an angle is oriented so that its vertex is visually displayed to the left or higher than 
the endpoints of the angle, students may identify the angle by stating the vertex 
before (rather than in between) the endpoints, thus violating the normative math-
ematical practice (see Gal & Linchevski, 2010). The use of numerals to label angles 
provides a direct, unambiguous method of identifying angles. Dedicated labels 
for lines, segments, or arcs similarly provide standalone resources for referencing 
specific parts of a diagram. Such a reduction in referential complexity has an 
analog in the evolution of programming languages in which more structured, 
object-oriented languages have replaced more basic languages.

How markings are used in diagrams in geometry textbooks. Over the course 
of the 20th century, the increased use of labeling resources in geometry diagrams 
is matched by an increase in the use of markings that indicate the geometric rela-
tions of congruence, parallelism, and perpendicularity. We aggregated the  
inventory codes for markings to track how the prevalence of marked, unmarked, 
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or diagrammatically marked attributes varied as date of publication changed. 
Figure 22 shows the percentages of diagrams per textbook that have at least one 
unmarked property, at least one marked, and at least one diagrammatically marked 
property as a function of the year in which a textbook was published.

As date of publication increased, there was a significant decrease in the 
percentage of diagrams that have unmarked properties (r (20) = -.84, p < .001) and 
a significant increase in the percentage of diagrams that have diagrammatically 
marked properties (r (20) = .77, p < .001). Furthermore, as the percentage  
of diagrams with diagrammatically marked properties in a textbook increased, 
the percentage of diagrams with unmarked properties decreased (r (20) = -.82,  
p < .001). These trends suggest that later 20th-century textbooks have more 
diagrams that convey geometric properties directly—and in the case of diagram-
matically marked properties, only—through choices in the Attributes system. That 
is, as date of textbook publication increased, the potential for diagrams to directly 

(c)

(b)(a)

Figure 22. (a) Percentage of diagrams with at least one marked property over textbook 
year, (b) percentage of diagrams with at least one unmarked property over textbook 
year, and (c) percentage of diagrams with at least one diagrammatically marked property 
over textbook year.
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realize classifying relational processes increased.
From the inventory codes for markings, we defined three classes of diagrams 

that further describe the trends in the use of markings in diagrams: diagrams that 
only have unmarked properties, diagrams that only have marked properties, and 
diagrams that only have diagrammatically marked properties. Diagrams with only 
unmarked properties require the text to convey congruence, perpendicularity, and 
parallelism relations; diagrams with only marked properties convey congruence, 
perpendicularity, and parallelism relations through both geometric diacriticals 
and statements that accompany the diagrams; and diagrams with only diacritically 
marked properties convey congruence, perpendicularity, and parallelism relations 
solely through geometric diacriticals (no accompanying text). Figure 23 shows 
scatter plots of percentages of diagrams in a textbook in each of these classes 
against year of publication.

Although there is no correlation between percentage of diagrams that only have 

Figure 23. (a) Percentage of diagrams with only marked properties over textbook year, 
(b) percentage of diagrams with only unmarked properties over textbook year, and  
(c) percentage of diagrams with only diagrammatically marked properties over  
textbook year.

(a) (b)

(c)
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marked properties and textbook year, there is a significant negative correlation 
between publication year and percentage of diagrams that only have unmarked 
properties (r (20) = -.70, p < .001) and a significant positive correlation between 
publication year and percentage of diagrams that only have diagrammatically 
marked properties (r (20) = .82, p < .001). Furthermore, textbooks with higher 
percentages of diagrams with only unmarked properties had lower percentages of 
diagrams with only marked properties (r (20) = -.72, p < .001) and lower percent-
ages of diagrams with only diagrammatically marked properties (r (20) = -.69,  
p < .001).

These trends suggest that later 20th-century geometry textbooks had more 
diagrams that only convey geometric properties through the use of different mark-
ings in the Attributes system. Diagrams that use markings to visually realize 
classifying relational processes encode more information than diagrams in which 
geometric relationships are specified by textual statements that accompany the 
figure. Investigating how this additional information affects the readability of a 
diagram as a visual text is a subject for further research. For now, we observe that 
the method we developed for inventorying the use of markings in a diagram 
provides a basis for measuring different kinds of semiotic work that diagrams can 
do in geometry.

Several textbooks in the corpus shared at least one author (for more information, 
see Table 2). This overlap in authors introduces the possibility that what we 
observed to be historical changes in the use of semiotic systems were really just 
author preferences that coincided with when the textbooks were published. We 
tested the claim that author preferences were biasing our results by eliminating 
author duplicates and recalculating the correlation coefficients.11 Whether this 
reduction is achieved by keeping the earliest or latest textbook that an author wrote, 
the trends we reported in the previous section remain in the reported directions, 
though in three cases they are not significant.12

Discussion
We have developed a semiotic framework for describing geometry diagrams as 

visual texts and have shown how that framework could be used to study diagrams 
empirically. The analysis of 20th-century geometry textbooks reported in the 
second part of the study provides evidence for the claim that the visual literacy 

11 We acknowledge an anonymous reviewer who raised the possibility of confounding author 
effects and suggested this method of recalculating the correlations. Table 2 identifies the early and 
late textbook subsets.

12 Prominence, labels, and markings correlations (with year of publication) for the early (n = 16) 
and late (n = 15) subsets, respectively: %with color (r = .69, p = .003; r = .717, p = .003), %with style 
(r = -.71, p = 002; r = -.811, p < .001); %with labeled point (r = -.46, p = .07; r = -.623, p = .013), 
%with only unlabeled points (r =.497, p = .050; r = .62, p = .014), %with only other labels (r = .444, 
p = .085; r = .63, p = .012); %with unmarked properties (r = -.781, p < .001; r = -.843, p < .001),  
%with diagrammatically marked properties (r = .708, p = .002; r = .845, p < .001), %with only 
unmarked properties (r = -.657, p = .006; r = -.746, p = .001), %with only diagrammatically marked 
properties (r = .78, p < .001; r = . 883, p <.001).
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demands for reading diagrams that appear in geometry textbooks have increased 
during the 20th century. The claim itself is not surprising and is, in fact, consistent 
with coarser-grained arguments made by Kress and van Leeuwen (2006). That we 
were able to provide evidence to support this claim by undertaking a semiotic 
inventory of actual geometry diagrams underscores the potential for using this 
framework for other investigations of geometry diagrams. We consider some of 
these possibilities below, but first, we historically situate our findings about the 
semiotic systems of geometry diagrams.

Before 1910, there were scant instances of geometry textbooks that featured 
diagrams that used different weights or colors for strokes or that marked properties 
using geometric diacriticals (Manders, 2008). Although it was technically possible 
to produce visually rich diagrams before the 20th century, this was not the norm 
during that time. One notable exception was Byrne’s Euclid (Byrne, 1847), which 
used color and geometric diacriticals to visually mark the properties of geometry 
diagrams. However, Cajori (1993) remarked that Byrne’s use of symbols and 
colored diagrams “was not taken seriously, but was regarded as a curiosity”  
(p. 429).

Through the 1910s, it was still uncommon for geometry textbooks to use 
anything other than dotted lines to visually differentiate the parts of a diagram. 
For example, none of the 127 diagrams that appear in Book 1 of Wentworth and 
Smith’s (1913) Plane Geometry apply different colors or weights to strokes, use 
labels other than capital letters, or show special markings to convey theoretical 
properties. Some early 20th-century textbooks—such as Schultze and Sevenoak’s 
(1913) Plane and Solid Geometry and David Eugene Smith’s (1923) Essentials of 
Plane Geometry—featured diagrams that showed some visual variations, but 
neither the use of geometric diacriticals nor conventions for varying the weight 
and style of different parts had been standardized at that time.

The novel status of the visual features of these textbooks is evident in the 
absence of any mention of such features in Cajori’s (1993) A History of 
Mathematical Notations. Although Cajori dedicated an entire chapter to the devel-
opment of the notations used in geometry, he did not address the history of any of 
the specialized symbolic markings that are used in geometry diagrams (such as 
using hash marks to indicate when two segments are congruent). Both the program 
for automatic diagrams laid out by Baker in 1902 and the omission of the history 
of diagrammatic notations from Cajori’s account suggest that these visual symbols 
emerged during the 20th century. Such historical evidence concurs with an obser-
vation by Manders (2008) about the use of hash marks to indicate congruence: 
“This practice seems too effective to have been readily lost once established; [sic] 
and is thus presumably a recent innovation” (p. 97).

By the end of the 20th century, the norm in textbooks was to include geometry 
diagrams that are rich in their use of different semiotic resources. The corpus study 
reported above described trends in the use of these resources for diagrams 
appearing in textbook sections about triangles, triangle congruence, and proofs 
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Table 2
List of  Textbooks in the Corpus by Publisher, Author, and Year of Publication, with 
Number of Diagrams About Triangles, Triangle Congruence, and Proofs About 
Triangles

Textbook Publisher Author Year
Number 

of 
diagrams

A Macmillan Schultze & Sevenoaka 1913 53

B Ginn and Company Wentworth & Smith, D. 
E.a 1913 49

C Merrill Durrell & Arnold 1917 71

D Ginn and Company Smith, D. E.a 1923 76

E World Book Clark & Otis 1927 62

F McGraw-Hill Farnsworth 1933 69

G Macmillan Schultze, Sevenoak, & 
Stoneb 1935 91

H Harcourt, Brace, and 
Company Barber & Hendrix 1937 56

I Ginn and Company Wentworthb & Smith 1939 80

J D. C. Heath and 
Company Wells & Hart 1943 100

K World Book Clark & Smith, R. R. 1948 62

L Macmillan Seymour & Smith, P. J. 1949 68

M Ginn and Company Welchons & 
Krickenberger 1956 129

N Houghton Mifflin Jurgensen, Donnelly, & 
Dolciania 1963 73

O Addison-Wesley Moise & Downsa 1964 107

P Houghton Mifflin Jurgensen, Donnelly, & 
Dolciania 1969 83

Q Addison-Wesley Moise & Downsb 1982 73

R Merrill Foster et al.a 1987 128

S Sunburst 
Communications

Chakerian, Crabil, & 
Stein 1987 157

T Houghton Mifflin Jurgensen & Brownb 1990 310
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U Addison-Wesley Clemens, O’Daffer, 
Cooley, & Dossey 1994 178

V Glencoe McGraw-Hill
Cummins, Kanold, 
Kenney, Malloy, & 
Mojicab

2001 285

Total: 2,360

a These are the earliest books from authors that contributed more than one book  
to the sample.
b These are the latest books from authors that contributed more than one book  
to the sample.

about triangles, but the trend toward more visually varied and diverse semiotic 
resources is evident in other types of diagrams as well. Table 3 shows a comparison 
of some of the visual features of the diagrams in Book 1 of Wentworth and Smith’s 
(1913) Plane Geometry to some of the visual features of the diagrams from sections 
that are equivalent in Clemens, O’Daffer, Cooley, and Dossey’s (1994) Geometry. 
Table 3 shows the range of variation in the visual presentation of diagrams between 
a mainstream textbook in the early 20th century and a mainstream textbook in the 
later 20th century. An area for further study would be to examine how choices in 
the Prominence and Attributes systems in geometry textbooks vary according to 
subject. For instance, marked points in Clemens et al.’s (1994) Geometry are not 
prevalent in diagrams about triangles (18 of 178), but appear frequently in diagrams 
about points, lines, planes, and angles (34 of 51). This is consistent with the claim 
made in the first section of the article that variations in gauge are the visual means 
through which points are given more or less salience in the visual display.

Table 3
Comparison of Visual Features of Diagrams From Two Geometry Textbooks

Wentworth and 
Smith (1913)

Clemens  
et al. (1994)

Number of diagrams (Book I or  
equivalent) 127 630

With labels other than points 0 237

With variations in color 0 487

With variations in weight 0 23

With variations in style 45 33

With geometric diacriticals 2 164

With marked points 0 248

Note. Marked points refers to points that are visually emphasized by using a dot; 
labels other than points refers to labels for lines, segments, or angles.
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The finding that later 20th-century geometry textbooks have more visually 
varied diagrams than earlier 20th-century geometry textbooks is consistent with 
historical analyses of textbooks in other disciplines (e.g., LaSpina, 1998; Lee, 2010; 
Woodward, 1993). Throughout the 20th century, steady advances in printing 
technology “contributed to radically altering the form and content of the textbook, 
such that by the 1980s four-color reproduction print formats were the norm” 
(LaSpina, 1998, p. 59). As the costs of printing decreased throughout the 20th 
century, adding photo-realistic images to “almost every page” of a textbook 
(Woodward, 1993, p. 118)—even in technical disciplines like science (Lee, 
2010)—became a standard means through which publishers enhanced the attrac-
tiveness of their products in an effort to boost sales (Woodward, 1993).

Though mathematics textbooks are not immune to the technical and market 
forces that have contributed to the steady increase in colorful visual representa-
tions, our semiotic analysis of the different visual resources through which 
diagrammatic texts represent meaning complicates this standard narrative. In the 
case of geometry textbooks, the application of colors, markings, and specialized 
labels to geometry diagrams—features that become easier to include as printing 
technology advances—is systematic and linked to conveying particular kinds of 
meaning. This is not necessarily the case in other subjects, where colorful illustra-
tions may actually be less instructionally effective than the black-and-white 
illustrations they replaced (Woodward, 1993).

When used systematically and strategically, visual differences in geometry 
diagrams have the potential to help students more clearly see the essential relation-
ships among the geometric figures they represent (Gal & Linchevski, 2010). If the 
communication potential of such visual differences is to be realized, students need 
to know how to read geometry diagrams. The systemic framework we developed and 
empirically validated provides theoretical footings that could help geometry teachers 
unpack their own practices for creating effective diagrams into teachable skills.

The semiotic framework we devised for conceptualizing geometry diagrams as 
visual texts could also provide analytic tools for investigating student interactions 
with dynamic geometry environments. An environment like GeoGebra 
(Hohenwarter & Preiner, 2007), for example, provides more choices under the 
Type system than those represented in network presented in Figure 5. In this 
environment, there are five initial choices for stroke. Each of these initial choices 
is represented by an icon and organized by geometric property. Under an icon that 
might be called generic straight stroke, there are seven subchoices, ranging from 
a line between two points to a vector from a point, with choices like segment, ray 
and poly line in between. Under an icon that might be called strokes that relate two 
or more objects, there are eight subchoices, ranging from perpendicular line to 
locus, with choices like parallel line, angle bisector, and tangents in between.

Beyond the Type system, the GeoGebra environment also provides resources for 
realizing choices in the Attributes and Prominence systems by clicking on an object 
and selecting the object properties dialog. The choices available in this dialog allow 
the user to vary, for example, the weight, style, and color of a stroke; the gauge, color, 
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and fill of a point; and also what GeoGebra identifies as the decoration of objects 
like segments and angles. The choices, such as tuples of arrows on segments, avail-
able under the decoration heading overlap with the choices in the Attributes system 
described previously. Describing the systemic organization of the visual resources 
that are available in an environment like GeoGebra could help students learn to 
strategically use those resources to create clear, effective diagrammatic texts.

Conclusion
This article reports a semiotic catalog for geometry diagrams and shows how that 

catalog can be used to empirically study the variations in the diagrams of geometry 
textbooks. From the corpus study of the use of the Attributes and Prominence 
systems in diagrams about triangles, it is clear that diagrams in newer geometry 
textbooks make more extensive use of the systems in the semiotic catalog than those 
in older textbooks. This tendency for newer diagrams to have more and varied 
semiotic resources than older diagrams has implications for the role of visual—and 
more specifically, diagrammatic—literacy in geometry instruction.

An important issue in geometry instruction is to develop in students the capacity 
not only to interpret but also to create texts. Dynamic geometry software provides 
a range of options for customizing the visual appearance of the parts of diagrams. 
As it becomes standard to use dynamic geometry software and other digital means 
of representation in mathematics classrooms, it becomes all the more important 
that students develop a sensibility for crafting and reading diagrams and other 
visuals. Showing students visually rich representations does not guarantee that 
students will recognize the systematic ways visual differences are meaningful 
(Diezmann & English, 2001; González & Herbst, 2013; Yore, Pimm, & Tuan, 
2007). For the full potential of these resources to be realized, there needs to be an 
effort toward teaching diagrammatic literacy skills.

Using systemic functional linguistics as a basis for demystifying language has 
been shown to be an effective strategy for teaching English language learners 
(Schleppegrell, 2013). The systems within the semiotic catalog presented here 
provide a basis for developing an analogous approach to teaching visual literacy in 
geometry. Teachers could use the choices in the Type, Position, Prominence, and 
Attributes systems to help students learn to see the visual differences in geometry 
diagrams as purposeful and to help students recognize how diagrams cohere as texts.
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APPENDIX
Examples of coded diagrams.
Example 1:

Diagram reproduced from Durrell and Arnold’s (1917) Plane Geometry (p. 30).

Diagram metadata: This diagram was indexed as Durrell_1917-30.2, to indicate 
that it is the second diagram (following the top–down, left–right protocol described 
previously) to appear on page 30 of Durrell and Arnold’s (1917) Plane Geometry. 
The diagram appears under the heading Triangles of the section labeled Book I.

Prominence codes: There are no variations in weight (line thickness), style (lines 
are all unbroken), color (everything is black), or gauge (points A, B, and C are not 
marked by dots) for any of the parts of the diagram. The diagram was therefore 
coded as (0,0,0,0) for each of these categories.

Attributes code: This diagram accompanies the following text:

The sides of a triangle are the lines which bound it. The perimeter of a triangle is 
the sum of the sides. The angles of a triangle are the angles formed by the sides; as 
the angles A, B, and C. The vertices of a triangle are the vertices of the angles of 
the triangle. (Durrell & Arnold, 1917, p. 30)

Markings: The accompanying text refers to the sides, angles, and vertices of a 
triangle but not to any relationships that have diagrammatic markings. Thus, this 
diagram was coded as (0,0,0) for each of the marked, unmarked, and diagrammati-
cally marked properties (i.e., congruent angles, congruent segments, right angles, 
parallel lines) codes.

Labels: The vertices of the triangles are labeled, and there are no other points in the 
diagram. Thus, the diagram was coded as (1) for labeled points and (0) for unlabeled 
points. There are no other labels in the diagram, which means the diagram was coded 
as (0,0,0) for the labels on strokes, labels in regions, and other labels categories.
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Example 2:

Diagram metadata: This diagram was indexed as Smith_1923-30.1, to indicate 
that it is the first diagram to appear on page 30 of Smith’s (1923) Essentials of 
Plane Geometry. The diagram appears under the heading Fundamental Theorems 
of the section labeled Book I.

Prominence codes: This diagram shows variation in weight: Strokes AC and 
A' C' are heavier than the other strokes. The diagram does not show any variations 
in style, color, or gauge. The diagram was coded as (1) for weight and (0) for all 
other prominence codes.

Attributes code: The diagram is accompanied by the following statement of what 
is given to be true about the figure:

Given the ∆s  (Smith, 1923, 
p. 30)

Markings: The statement indicates that angles A and A', along with angles C and C', 
are congruent; these congruent angles are marked in the diagram (arcs with sets of 
hash marks). Thus, the diagram was coded as (1) for having marked angles. Because 
no additional angles are given as congruent and no additional angle markings are in 
the diagram, the diagram was coded as (0) for having unmarked and diagrammatically 
marked angles.

The statement also indicates that segment b is equal to segment b'. Although these 
segments are visually emphasized through having heavier stroke weight, they are 
not marked as congruent in the diagram. Thus, the diagram was coded as (1) for 
having unmarked segments. None of the other segments were given as being 
congruent, and there are no other segments marked congruent in the diagram, thus 
the diagram was coded as (0) for having marked and diagrammatically marked 
segments. There are no parallel lines in the diagram, and there are also no right 
angles, so the diagram was coded as (0,0,0) for the marked, unmarked, and 
diagrammatically marked attributes codes for these properties.

Labels: The diagram has labels for each of the points of the triangles. There are 
no other visually distinct points in the diagram. Thus, the diagram was coded as 
(1) for labeled points and (0) for unlabeled points. The diagram also has dedicated 
labels for its segments. It was therefore coded as (1) for labels on strokes.

Diagram reproduced from Smith’s (1923) Essentials of Plane Geometry (p. 30).


