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In our May editorial (Cai et al., 2018a), we explored how collaborations among 
teacher–researcher partnerships could harness emerging technological resources 
to address the problem of isolation in the work of teachers and researchers. In 
particular, we described a professional knowledge base (Cai et al., 2018b) and a 
mechanism by which that knowledge base could be continuously populated, 
updated with data and resources that are useful to teachers and researchers, and 
shared among partnerships thereby enabling them to work on the same instruc-
tional problems. In this editorial, we shift our focus to discuss how data on 
students’ thinking and classroom experiences could be leveraged within such a 
system to improve instructional practice. We will explore how the knowledge base 
could serve as a tool to (a) gather, process, and analyze data from individual 
students; (b) increase our understanding of the effects of students’ mathematical 
learning experiences; and (c) help teacher–researcher partnerships understand and 
improve students’ learning. 

Developing an Explanatory Theory That Connects Teaching With 
Students’ Learning

An overarching theme of our editorials has been addressing the persistent gap 
between research and practice in mathematics education. We have acknowledged 
that if research is to have a greater impact on practice, it must address the problems 
of practice that teachers grapple with, and it must do so in a way that produces 
knowledge that teachers can use. The professional knowledge base we have 
described attempts to do this by engaging teacher–researcher partnerships in 
collaborative efforts to create and share lessons whose effectiveness is iteratively 
refined over the course of many cycles of design and implementation. This process 
is based on the assumption that specific instructional activities can be connected 
to students’ opportunities to learn and the degree to which students are able to 
take advantage of those opportunities. 

This assumption echoes Nuthall’s (2004) call, in his critique of research on 
teaching effectiveness, for “research that actually answers the question of how 
teaching is related to learning in a way that is comprehensible and practically 
useful for teachers” (p. 273). Nuthall proposed six considerations that must be 
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taken into account for research on the teaching–learning relationship to produce 
useful findings. Of these, he considered “complete, continuous data on individual 
student experience” (p. 296) to be the most critical because this kind of data is 
fundamental to developing an explanatory theory of how different ways of 
teaching are related to student learning outcomes. Without data on how students 
experience and respond to teaching, research cannot fully illuminate the under-
lying processes that connect the choices made by teachers in the classroom to 
students’ learning. 

In his own research, Nuthall (2004) made use of different technologies, 
including “miniature video cameras with zoom lenses mounted on the ceiling of 
the classroom” and “miniature individual broadcast microphones” (p. 300), to 
systematically capture continuous data on each individual student in a classroom. 
These data allowed him to follow the development of each student’s understanding 
of particular concepts and to trace the origins and consequences of particular 
misconceptions that students developed during lessons. We agree with Nuthall 
about the value of collecting continuous data on the learning experiences of each 
student. We have further extended this view to include collecting continuous data 
about noncognitive aspects of each student’s learning experiences (Cai et al., 
2017b). 

Challenges to Understanding Students’ Learning Experiences
Taking such a broad view of students’ learning experiences comes with a cost. 

In typical mathematics classrooms, teachers (and researchers) face a number of 
obstacles to collecting continuous data from (and studying) students’ mathematical 
learning experiences. Accessing how all students think about and make meaning 
of mathematics in the moment would be daunting, to say the least. Teachers often 
gain insights into students’ thinking by talking with students or by examining 
artifacts of their work. However, keeping track of every student’s thinking through 
an entire lesson or over several lessons is an overwhelming task for a teacher. 
Collecting so much information about every student, and keeping that information 
up-to-date, could easily collapse under its own weight. Although Nuthall (2004) 
found the comprehensive data he collected to be a powerful resource for under-
standing the cognitive relationships between teaching and learning, he acknowl-
edged that the process of obtaining and processing the data was time-consuming 
and labor-intensive.

Including noncognitive aspects of students’ experiences adds yet more 
complexity to data collection and processing. For example, comprehensively 
assessing students’ engagement and motivation might require a combination of 
classroom observation, video analysis, surveys, and interviews (Middleton, 
Jansen, & Goldin, 2017). Nevertheless, we believe it is worth pursuing the creation 
and use of technologically aided professional knowledge bases because of the 
considerable power such knowledge offers for building a usable explanatory theory 
that connects teaching with students’ learning.



364 Using Data to Understand and Improve Students’ Learning

In response to the challenges of creating and using large databases and to calls 
for greater adoption of data-driven instruction (Hamilton et al., 2009), a number 
of digital tools to collect and manage student data have been created and marketed 
to teachers and school districts. These tools include digital gradebooks and dash-
boards, learning management systems, applications that generate assessments, 
software and online platforms for individual student instruction, and digital 
remediation tools. Indeed, in a national representative survey of 4,600 teachers in 
the United States, the Bill & Melinda Gates Foundation (2015) found that “virtu-
ally all teachers (93%) regularly use some form of digital tool to guide instruction” 
(p. 3). However, the same survey revealed that 67% of those teachers were “not 
fully satisfied with the effectiveness of the data or the tools for working with data 
that they have access to on a regular basis” (p. 3). The teachers identified key 
challenges presented by the tools, reaching the consensus that, despite the help of 
existing digital tools, it remains too overwhelming to collect, analyze, and use 
data to support data-driven instruction. Current offerings such as digital dash-
boards that track and display student progress remain subject to the fundamental 
problem of communicating too much information about too many students at once. 
Information overload is a very real phenomenon (Ingram, Louis, & Schroeder, 
2004). Moreover, the use of the data provided by current digital tools is often 
constrained by the incompatibility of different technological platforms and incon-
sistency in reporting the data. Connecting student data from different sources into 
a single platform often requires much time and effort. Finally, teachers are hard-
pressed to react to data effectively and to adjust their instruction based on feedback 
from digital systems because these systems often do not provide timely informa-
tion in a usable form. Therefore, it is not surprising that the promise of data-driven 
instruction has, to this point, not been fully realized. 

In the future world we envision, however, it is not difficult to imagine solving 
the technical difficulties of gathering and managing such complex and large data 
sets in ways that could provide timely insights in a form that teachers could use 
on a daily basis. Even today, portable video cameras and audiorecording equip-
ment are ubiquitous in the form of smartphones. In addition, the spread of one-to-
one technology initiatives that provide every student in a school district with a 
laptop or tablet computer means that many students are rarely far from a device 
that can gather the continuous student data that Nuthall (2004) described. 
Moreover, the technology to automatically process, transcribe, parse, and filter 
these data is rapidly developing. Online services already routinely process huge 
collections of image data, automatically indexing pictures by faces and objects. 
The presence of these technologies in the classroom can also facilitate the collec-
tion of data relevant to noncognitive outcomes and affective factors by making it 
easier to capture real-time data directly from students using methods such as 
experience sampling (Zirkel, Garcia, & Murphy, 2015). In other words, the 
capacity to capture, process, and store comprehensive cognitive and noncognitive 
data longitudinally for every student either already exists or is on the near horizon. 
Thus, a critical consideration for our vision is how these kinds of data on students’ 
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classroom experience, coupled with detailed student assessment data and teachers’ 
own observations, could enable teachers and researchers to gain insights into 
students’ mathematical learning experiences that have a real impact on practice. 

The Power of the Knowledge Base for Collecting, Analyzing, 
and Using Data

Our vision of the use of data on students’ thinking and experiences is based on 
three assumptions about these data and the relationship between teaching and 
learning. The first assumption is that conceptual models based on longitudinal 
data on individual students or groups of students with similar learning profiles, 
often called learning trajectories, are incomplete without descriptions of instruc-
tional activities or learning experiences associated with changes in student 
thinking and learning. In other words, data on students’ experiences must be 
paired with data on instruction to make connections between teachers’ teaching 
and students’ learning. This is a point we have emphasized in our descriptions of 
how teacher–researcher partnerships could work with a professional knowledge 
base (Cai et al., 2018a). The second assumption is that teaching can greatly improve 
students’ learning if teachers understand students’ thinking and learning experi-
ences. The work of Cognitively Guided Instruction has already provided ample 
evidence to support this assumption (Carpenter, Franke, Jacobs, Fennema, & 
Empson, 1998). The final assumption is that a professional knowledge base offers 
the potential, through the effective application of technology, to provide timely 
and useful information to teachers about students’ thinking and learning in ways 
that do not further burden them.

What makes this level of student data important? Why would we, as researchers 
and teachers, want to have this flood of information? What would researchers and 
teachers actually do with this information? How could the data be collected, 
analyzed, and used efficiently and productively? In this section, we propose a 
framework for supporting teacher–researcher partnerships’ use of data for instruc-
tion. As we indicated in Cai et al. (2017b), we believe that students’ learning 
experiences include both cognitive and noncognitive aspects in both the short and 
the long term. Thus, data have the potential to be useful to teachers and researchers 
at different times relative to any individual lesson. We will therefore consider how 
data can be useful in the moment (during a lesson), in the short term (shortly after 
a single or multiple lessons), and in the long term (across years). 

Table 1 outlines our proposed framework for envisioning the collection, anal-
ysis, and use of student data, indicating the kinds of data on students’ experiences 
that could be useful at different points in time. Although not explicitly listed in 
the table, our first assumption implies that any data on a student’s experiences 
collected within this framework would necessarily be coupled with a description 
of the instructional activities associated with those experiences. It is also important 
to note that the data and the tools that support teachers’ use of data must work 
together to avoid the time-consuming, manual aggregation of information often 
required today (Bill & Melinda Gates Foundation, 2015). Moreover, it remains an 
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Table 1
Framework for Collecting, Analyzing, and Using Data on Students’ Mathematical 
Learning Experiences

Time frame Cognitive Noncognitive 
In the moment

Data •	 Students’ conceptions and 
misconceptions

•	 Students’ unexpected 
responses

•	 Students’ engagement with 
tasks

•	 Students’ affect or frustration 
level

•	 Students’ participation in 
discourse

Goals •	 Address, in the moment, 
particular misconceptions 
among subgroups of students 
and provide immediate 
supports

•	 Enact supports for students 
who are disengaged or 
discouraged 

•	 Identify how students are  
being positioned within the 
classroom and shape classroom 
discourse to provide them with 
a voice

Short term
Data •	 Students’ conceptions, 

misconceptions, and 
unexpected responses

•	 Students’ solution strategies
•	 Students’ ways of thinking
•	 Students’ insights

•	 Factors that affect students’ 
engagement with a task

•	 Students’ confidence both 
before and after solving a 
problem

•	 Classroom norms of 
participation

Goals •	 Identify groups of students 
with similar conceptions, 
misconceptions, or ways of 
thinking to inform the next 
lesson plan

•	 Identify groups of students 
who are experiencing different 
levels of motivation or 
engagement with the lesson to 
inform the next lesson plan

Long term
Data

Goals

•	 Data across classrooms and 
research sites

•	 Longitudinally examine 
changes in students’ cognitive 
learning outcomes so that 
teachers can track the progress 
of individual students

•	 Develop explanatory theories 
that connect teaching and 
learning for particular groups 
of students

•	 Connections between affect 
and achievement

•	 Longitudinally examine 
changes in students’ affect 
related to their learning
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open question what kinds of information teachers can use effectively, especially 
while they are actively engaged in instruction. Rather than an exhaustive list, we 
see this proposed framework as a potential guide for research in this area, 
providing some examples of the data that could be relevant and the goals for using 
that data at different time frames. 

Data in the Moment
In the classroom, teachers engage in a complex interaction with students 

wherein they continuously assess their students’ responses and make pedagogical 
decisions in the moment based on those assessments, their own knowledge, and 
their instructional plan. What data would be useful in the moment to help teachers 
make these decisions more effectively as they teach? How could those data be 
presented to teachers in such a way that it is not just another distraction or demand 
on their time?

Suppose that all students were equipped with a tablet device onto which they 
recorded their mathematical work as they would on paper. The device’s hand-
writing recognition algorithms would read and process the data, and the data 
would be uploaded to the knowledge base for analysis, resulting in immediate 
feedback provided to teachers about each student’s understanding and strategy 
use. For example, a teacher–researcher partnership could identify potential attri-
butes of interest for each instructional task that they stored in the knowledge base. 
These attributes would be “dimensions of reasoning or understanding in a given 
domain” (Izsák & Templin, 2016, p. 20) that would be needed to complete the task. 
The system would provide feedback about students’ performance with respect to 
those attributes. Developments in diagnostic classification models (de la Torre, 
Carmona, Kieftenbeld, Tjoe, & Lima, 2016) and computer adaptive testing 
(Chang, 2015) as well as advances in technology could contribute to designing a 
system to assess students’ mathematical thinking in such ways. This combination 
of technology and psychometrics would give teachers a window into each student’s 
understanding and allow them to use students’ responses to immediately inform 
instruction. 

As another example of using data in the moment, the system of data collection 
and analysis could provide the teacher with an initial clustering of student 
responses to a task based on similarities along particular attributes. Different 
categories of student responses could be easily compared to illustrate different 
strategies or to address misconceptions. As a third example, if a task involved 
drawing a diagram, the system could classify the students’ pictures and present 
the main types to the teacher in a side-by-side comparison. If the teacher was 
working with a well-designed lesson and this allowed him or her to see that the 
students had used only two of four expected responses, the teacher could adjust 
the remainder of the lesson to focus on the two responses that students generated 
(or find a way to bring out the other two responses).

Many kinds of data on students’ noncognitive learning experiences could also 
inform in-the-moment teacher decision making. For example, students could rate 
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their confidence level before and after working on a particular problem. Research 
has shown that students’ confidence for solving a particular problem is highly 
correlated with their success in solving the problem (Pajares, 1996; Zimmerman, 
1995). Information about how confident students are when approaching a task 
could signal teachers that less confident students might need additional support 
to engage in productive struggle with the task. With respect to student engagement 
and participation in classroom discourse, a system could monitor each student’s 
talk and process it on the fly to produce classroom “heat maps” indicating which 
students are contributing to mathematical discussions and which students are 
silent. If a teacher were equipped with such visualizations, he or she could quickly 
gain important insights into which students are being positioned as mathematically 
powerful and which students are playing more passive roles (Esmonde & Langer-
Osuna, 2013; Herbel-Eisenmann, Meaney, Bishop, & Heyd-Metzuyanim, 2017). 
This would then allow the teacher to shape the classroom discourse to give all 
students an opportunity to have a voice. Similarly, the system could report in-the-
moment data on student frustration based on image and voice analysis, helping 
the teacher judge when students are productively struggling with a task versus 
when students are becoming too frustrated. Another possibility is a tablet device 
equipped to collect data to determine how engaged the students are with a task or 
to which aspects of the task they are attending. This could also involve on-the-fly 
voice analysis or other technologies such as eye tracking. Real-time displays of 
these data could, again, be provided to teachers for their use in the moment.

Of course, many teachers already gather some information of this type through 
their own observation in the classroom. Noticing what students do and listening 
to what they say is a powerful tool, as expert teachers have long recognized. But 
no teacher (and no researcher) has the time or resources to collect and make sense 
of these data for every student during every lesson. The difference in the type of 
system that we describe is that data from every student would be gathered simul-
taneously and automatically, and the system itself would surface those data that 
would be most helpful at any given moment to support teachers’ pedagogical 
decision making—a just-in-time resource for instruction. 

Data in the Short Term
In our framework, analyzing and using data in the short term refers to using 

data reflectively after a lesson or unit has been taught to inform subsequent 
instruction with the same students. Data recorded in the knowledge base on each 
student’s strategy use, conceptions and misconceptions, and affective responses 
to a lesson could guide teachers and researchers as they decide what needs to be 
addressed in the next lesson and what new concepts are feasible for students given 
their current understanding. Similarly, teachers and researchers could access 
students’ performance on previous instructional tasks to help them predict how 
those students would think about tasks in the next lesson. For example, following 
a lesson introducing exponential growth and graphs of exponential functions, the 
knowledge base would contain data on the kinds of graphs students produced. If 
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some students produced graphs that did not show equal growth factors over equal 
intervals (perhaps producing linear graphs or graphs with irregular growth 
factors), the system could alert the teacher and researcher of this development and 
make predictions about how those students would engage with the next lesson’s 
tasks, allowing the teacher and researcher to plan how to address the misconcep-
tion in the next lesson. 

Such data would also reveal individual students’ learning progressions in the 
unit. The data could be used to identify students who had difficulty with particular 
concepts in the unit. The system could then spotlight clusters of students who were 
experiencing similar difficulties, perhaps identifying those clusters in another 
type of heat map display, so that the teacher and researcher could plan how to 
address those difficulties. Data on noncognitive aspects of students’ experiences 
could also be used by the teacher and researcher to build targeted noncognitive 
supports into the next lesson. For example, the teacher and researcher could look 
specifically at students who were not participating much during a given lesson 
and check that they still were engaged and not “falling through the cracks.” Or the 
system could highlight productive and unproductive classroom norms, allowing 
the teacher and researcher to plan for supports in subsequent lessons that would 
promote productive norms and discourage unproductive ones. By analyzing these 
kinds of data from the lessons in a unit, the system could help teacher–researcher 
partnerships to identify key aspects of how each student’s affect and cognitive 
aspects of learning mutually influence each other. 

Data in the Long Term
The professional knowledge base that we have described (Cai et al., 2018b) 

would provide teachers and researchers with a powerful tool suitable for a variety 
of needs ranging from large scale (across classrooms or schools) to small scale 
(across particular groups of students or individual students). Teachers and teacher–
researcher partnerships will likely want to study data from their own classroom 
or a few classrooms in which students are trying to achieve the same learning 
goals. Moreover, with access to longitudinal data on each student’s mathematical 
thinking, teachers and researchers could become increasingly familiar with how 
their students think about certain concepts and, ultimately, could begin accurately 
predicting how particular students will respond. By connecting classroom data 
sets from teachers who have used the same instructional task or sequence of tasks, 
the system could begin to make useful connections between students’ under-
standing and conceptions and their subsequent learning experiences with those 
tasks. These connections would generate an explanatory theory of the kind envi-
sioned by Nuthall (2004), a theory that would predict how other students will 
respond to the activity and, along with data from the teacher’s own classroom, 
enable a kind of data-based planning not previously possible. This kind of long-
term use of data could have a strong impact on equity by affording teacher–
researcher partnerships the ability to tailor implementation to create similar 
learning opportunities for all groups of students.
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Teacher–researcher partnerships might also be interested in studying students 
who respond in different ways to hypothesized cause-and-effect relationships 
between a task and student learning. Learning more about these local cause-and-
effect relationships would allow tweaking of the explanatory theory, as well as 
tweaking of the instructional activity for future implementation. Moreover, these 
data could aid the planning of follow-up activities to build on students’ thinking 
as revealed by the data. Fundamentally, the long-term work of teaching (conducted 
by teachers and teacher–researcher partnerships) would not lie in redesigning 
activities (i.e., curriculum development) but in studying tendencies of students and 
making systematic incremental improvements in teaching and learning that, over 
time, accumulate into big improvements. 

Researchers would likely have a special interest in accumulating long-term data 
on a sequence of tasks that develop a particular learning goal or network of goals. 
Teacher–researcher partnerships at different sites might use different tasks or 
sequences of tasks for a particular mathematical topic, and the data on students’ 
experiences with different tasks and sequences would help shed light on the more 
promising sequences of tasks for maximizing students’ learning. Stepping back 
and looking at larger data sets (across more students and connected sequences of 
activities) would allow building more ambitious explanatory theories based on 
models of students’ thinking or learning trajectories that provide new insights into 
how students with different backgrounds develop their thinking connected to 
particular kinds of instructional tasks. The knowledge base would open new 
possibilities for formulating and testing both local and more general theories about 
cause-and-effect relationships between teaching and learning. These explanatory 
theories could, for example, specify relationships that are contingent on the devel-
opment of particular prerequisite knowledge.

With respect to teaching, and specifically the pedagogical decisions that 
teachers make as they teach, the system could collect data across research sites 
about the different kinds of in-the-moment decisions that teachers make when 
confronted with unexpected situations in a given task or lesson. Over time, 
collecting and analyzing those data along with the student outcomes that followed 
particular pedagogical choices could help populate the knowledge base with 
information on what kinds of decisions are best for students’ learning on the topic. 
The same kind of analyses could be conducted on the effects of using particular 
planned questions, follow-up responses to students’ anticipated solution strategies, 
and practice exercises after the concept was developed. Were the predicted 
outcomes confirmed, or are changes to the predictions warranted? As data are 
collected across multiple classrooms with diverse groups of students, explanatory 
theories can be refined to guide the planning of instruction that reaches more and 
more students. 

The Roles of Teachers and Researchers
If we assume the existence of a system that could efficiently collect, analyze, 

and share data on student experiences linked to instructional activities to create 
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usable knowledge bases, we are confronted with the fact that teachers and 
researchers are likely to play quite different roles. We have already described some 
of the radical changes in the work of teachers and researchers in this new system 
in this and earlier editorials (Cai et al., 2017a, 2017b, 2017c). In our next editorial, 
we will further explore these new roles and consider how we might move from 
our present reality to this future reality.
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