
Reason Abstractly and 
Quantitatively

Practice 2: Reason abstractly and  
quantitatively

Mathematically proficient students make sense of quantities and their relation-
ships in problem situations. They bring two complementary abilities to bear on 
problems involving quantitative relationships: the ability to decontextualize—to 
abstract a given situation and represent it symbolically and manipulate the repre-
senting symbols as if they have a life of their own, without necessarily attending 
to their referents—and the ability to contextualize, to pause as needed during 
the manipulation process in order to probe into the referents for the symbols 
involved. Quantitative reasoning entails habits of creating a coherent represen-
tation of the problem at hand; considering the units involved; attending to the 
meaning of quantities, not just how to compute them; and knowing and flexibly 
using different properties of operations and objects. (CCSSI 2010, p. 6)

Unpacking the Practice
Practice 2 highlights a general disposition and set of skills that we hope to see across all of 
mathematics. However, it has particularly strong ties to children’s understanding of number 
and operations and algebra. While it is beyond the scope of this book to provide an in-depth 
analysis of connections to the National Council of Teachers of Mathematics (NCTM) Content 
Standards, after addressing the Process Standards we briefly highlight a few key connections to 
NCTM’s Number and Operations Standard and Algebra Standard.

Problem Solving Standard

Practice 2 of the Common Core State Standards for Mathematics (CCSSM) begins with a focus 
on problem solving by highlighting how students should “make sense of quantities and their 
relationships in problem situations” (CCSSI 2010, p. 6; italics added), with a particular emphasis 
on the role of quantitative and abstract reasoning when solving problems. Although the prac-
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tice is framed as a set of skills proficient students bring to bear on a problem, it is important to 
understand that abstract and quantitative reasoning develop through problem-solving oppor-
tunities. The first vignette in the examples section shows how problem-solving situations can 
be used to introduce students to or deepen their understanding of this practice. This connects 
to NCTM’s Problem Solving Standard, which states that students should have opportunities to 
“build new mathematical knowledge through problem solving” (NCTM 2000, p. 52).

Another important aspect of NCTM’s Problem Solving Standard is that students should 
“solve problems that arise in mathematics and in other contexts” (NCTM 2000, p. 52; ital-
ics added). Practice 2 emphasizes the relationship between contextualized problems and 
mathematical symbols, thus providing ample opportunity to connect mathematics to other 
contexts. This practice also highlights the importance of Adding It Up’s procedural fluency 
strand in problem solving. “Procedural fluency refers to knowledge of procedures, knowledge 
of when and how to use them appropriately, and skill in performing them flexibly, accurately, 
and  efficiently” (NRC 2001, p. 121). While much of practice 2 focuses on contextualizing and 
decontextualizing (moving back and forth between the problem situation and its mathemati-
cal representation), this practice also states that students should “manipulate the representing 
symbols as if they have a life of their own, without necessarily attending to their referents” 
(CCSSI 2010, p. 6). As students develop a greater expertise and fluency with mathematical pro-
cedures, they can use the procedures as a tool without the need to constantly refer back to the 
problem situation. However, as this practice emphasizes, students need to check with reality 
frequently to be sure that their mathematical work remains connected to the problem context.

Representation Standard

Representation plays a central role in practice 2 and in the decontextualizing and contextual-
izing that the practice emphasizes in particular. This practice explicitly states that students 
should “abstract a given situation and represent it symbolically” (CCSSI 2010, p. 6; italics add-
ed) and that “quantitative reasoning entails habits of creating a coherent representation of the 
problem at hand…[and] attending to the meaning of quantities” (p. 6; italics added). Central to 
this practice is the use of the language of mathematics to represent a problem in a useful way, 
as well as the ability to make sense of symbolic representations of problems.

NCTM’s (2000) Principles and Standards for School Mathematics states that “the term 
representation refers both to process and to product—in other words, to the act of capturing 
a mathematical concept or relationship in some form and to the form itself” (p. 67). This dual 
nature of representation can be seen most clearly in the first vignette in the examples section. 
On the one hand, the teacher emphasizes the products by creating various symbolic repre-
sentations of the students’ strategies and using these representations of the problem to move 
forward. On the other hand, the entire vignette is an example of the process “of capturing a 
mathematical concept or relation in some form” (NCTM 2000, p. 67) because the teacher con-
tinually asks the students to explain the relationship between the symbolic representations and 
the problem context.

The importance of mathematical representation is also captured by the strategic compe-
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tence strand from Adding It Up, which states that “with a formulated problem in hand, the 
student’s first step in solving it is to represent it mathematically in some fashion, whether 
numerically, symbolically, verbally, or graphically” (NRC 2001, p. 124). By emphasizing the 
importance of contextualizing and “attending to the meaning of quantities” (CCSSI 2010, p. 6), 
this practice draws a clear distinction between reasoning about relationships among quantities 
and what Adding It Up refers to as “number grabbing”:

Becoming strategically competent involves an avoidance of “number grabbing” methods (in 
which the student selects numbers and prepares to perform arithmetic operations on them) 
in favor of methods that generate problem models (in which the student constructs a mental 
model of the variables and relations described in the problem). (NRC 2001, p. 124)

Notice that the emphasis in this practice is on “making sense of quantities and their rela-
tionships in problem situations” (CCSSI 2010, p. 6; italics added), not blindly computing with 
numbers or algebraic symbols. It is important to understand that quantity should be seen as 
a measureable attribute of an object and thus different from numbers. Thompson (1993) de-
scribes quantitative reasoning in the following way:

A prominent characteristic of reasoning quantitatively is that numbers and numeric relation-
ships are of secondary importance, and do not enter in to the primary analysis of a situation. 
What is important is relationships among quantities. In that regard, quantitative reasoning 
bears a strong resemblance to the kind of reasoning customarily emphasized in algebra in-
struction. (p. 165)

More specifically, Thompson argues that one can reason quantitatively without assigning 
specific measurements (numbers) and the use of numbers does not necessarily imply that one 
is reasoning quantitatively. He gives the example of being able to determine whether you or 
someone else is taller without actually measuring either person’s height.

Communication Standard

As written, practice 2 does not explicitly address mathematical communication. However, this 
practice is deeply connected to mathematical communication in two important ways. First, 
as illustrated in the elementary grades vignette in the examples section, engaging students in 
this practice provides ample opportunity for students to communicate about their mathemati-
cal thinking. When students must explain the relationship between the real-world context of a 
problem and their symbolic representation of that context, they must articulate their thinking 
to others and listen to and make sense of others’ thinking and explanations. These ideas are re-
flected in the first three goals of NCTM’s Communication Standard: Instructional programs…
should enable all students to—

•	 organize	and	consolidate	their	mathematical	thinking	through	communication;
•	 communicate	their	mathematical	thinking	coherently	and	clearly	to	peers,	teachers,	

and others;
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•	 analyze	and	evaluate	the	mathematical	thinking	and	strategies	of	others.	(NCTM	
2000, p. 60)

Therefore, we can see how this practice is supportive of NCTM’s Communication Standard. 
Having students participate in abstract and quantitative reasoning provides rich opportunities 
for them to engage in mathematical communication. In addition, having students engage in 
mathematical communication is a key means of providing students with opportunities to rea-
son abstractly and quantitatively.

Second, we can use mathematics as a means of communication, or as the fourth goal in 
NCTM’s Communication Standard states, instructional programs should enable students 
to “use the language of mathematics to express mathematical ideas precisely” (2000, p. 60). 
Reasoning abstractly and qualitatively provides students with the opportunity to do exactly 
this. By translating real-world problem contexts into mathematical symbols, students have 
an opportunity to engage in a particularly precise form of communication that is available 
through the language of mathematics.

Connections Standard

Practice 2 provides key opportunities for students to make mathematical connections. NCTM’s 
Connections Standard emphasizes that students should be able to “recognize and use con-
nections among mathematical ideas” (NCTM 2000, p. 64) as well as “recognize and apply 
mathematics in contexts outside of mathematics” (p. 64). This practice provides opportunities 
for both. The first vignette in the examples section highlights the possibility of making connec-
tions between mathematical ideas by examining multiple symbolic representations of the same 
mathematical pattern. This practice also emphasizes students using mathematical symbols to 
represent problem situations and the need for them to relate their mathematical work back to 
those situations, providing the opportunity to connect mathematics to real-world contexts. 
Both types of connections support the development of Adding It Up’s productive disposition 
strand: Making connections between mathematical ideas helps students learn that “mathemat-
ics is understandable, not arbitrary” (NRC 2001, p. 131) and connections to real-world situa-
tions can help students see that mathematics is “both useful and worthwhile” (p. 131).

Number and Operations Standard

Reasoning abstractly and quantitatively requires that students understand multiple “ways of 
representing numbers [and the] relationships among numbers” (NCTM 2000, p. 32) as well as 
“understand meanings of operations and how they relate to one another” (p. 32). This might 
include renaming numbers in productive or useful ways, such as renaming 37 from “3 tens and 
7 ones” to “2 tens and 17 ones” when using the standard U.S. algorithm for subtraction or rely-
ing on properties such as the commutative and associative properties of addition to simplify 
computations when solving a problem. Such work would reflect the idea that students should 
be able to “manipulate the representing symbols as if they have a life of their own” (CCSSI 
2010, p. 6) and would highlight the importance of students “knowing and flexibly using differ-
ent properties of operations and objects” (p. 6).
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Algebra Standard

Practice 2 is arguably most closely related to NCTM’s Algebra Standard. The practice points to 
the importance of students’ ability to “decontextualize—to abstract a given situation and repre-
sent it symbolically and manipulate the representing symbols as if they have a life of their own” 
(CCSSI 2010, p. 6) and to “contextualize, to pause as needed during the manipulation process 
in order to probe into the referents for the symbols involved” (p. 6). A prototypical example of 
this practice might involve translating a problem situation into algebraic notation (decontex-
tualizing), manipulating those symbols to arrive at a solution, and then reinterpreting that an-
swer in terms of the original problem situation (contextualizing). The NCTM Algebra Standard 
emphasizes similar forms of reasoning, stating that students must be able to “represent and 
analyze mathematical situations and structures using algebraic symbols” (NCTM 2000, p. 37) 
and “use mathematical models to represent and understand quantitative relationships” (p. 37).

Classroom Examples
The examples below can be adapted to work across a broad range of grades and highlight two 
different aspects of reasoning abstractly and quantitatively. The elementary grades vignette fo-
cuses heavily on helping students learn to move back and forth between problem context (the 
number of seats at a table) and mathematical representations of this situation (such as symbolic 
expressions and equations). The middle and high school vignette offers a series of sample tasks 
that can be used to help students develop their understanding of rate of change (how one quan-
tity changes in relationship to another quantity) and provides a clear emphasis on reasoning 
about relationships among quantities as opposed to considering specific numerical values.

Elementary Grades Vignette: How Many Seats?

The example below can be adapted to a broad range of elementary and middle grades. Work 
with younger children could focus more heavily on the earlier part of the vignette in which 
children share and explain their strategies with concrete numbers; see, for instance, the Dot 
Square problem (NCTM Problem Solving Standard; NCTM 2000, p. 185), which gives an 
example of a similar problem for grades 3 to 5. Work with older children could focus more 
heavily on introducing algebraic notation and developing a variety of algebraic expressions to 
match this situation. The vignette draws heavily from work with middle school students found 
in Bishop, Otto, and Lubinski (2001), Lannin (2003), and Boaler and Humphreys (2005), all 
three of which provide excellent examples of similar activities, how they can be used in the 
classroom, and the strategies children develop for solving these types of problems.

Teacher: Look at this picture I have on the board [fig. 2.1]. We are going to figure 
out how many people can sit at a table made out of squares. In the picture, 
there are four people sitting at just one square table. Figure out how many 
people can sit in the next three pictures.
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Find the graph that best matches this sentence.
The value of the land �rst decreased, then began to increase.

For the other graphs, write a sentence to describe what is happening.

Janet, Gail, and Susan all walked away from the railroad station. 
Janet walked at a steady pace, Gail speeded up as she walked,
and Susan slowed down. 
Decide which graph pictures each girl’s walk. Explain your reasoning.

Fig. 2.1. Square table pattern

[The students quickly complete this task, and the teacher has students ex-
plain their strategies for the fourth picture.]

Teacher: Can someone come up and explain how they counted the number of seats 
for four squares?

Ashanti: Well this [runs her finger along the top edge] would be four chairs, and 
then the bottom would be another four, making eight. Then you would 
have these two [points to the two ends] makes ten.

Teacher: OK, did everyone see how she figured that out? I’m going to write that 
like this [writes 4 + 4 + 2]. Ashanti, do you think that shows how you 
counted up the seats, or should I write it a different way?

Ashanti: That’s how I did it.

Teacher: Did anyone count the number of people in a different way?

Khalil: I counted three on each end, so that’s six. Then I counted two for each 
table in the middle, so that’s four more. Six and four is ten.

Teacher: I’m not sure I followed all that. Can you come up and show us what you 
mean by three on each end?

Khalil: I mean on this table [points to the first square] there are three seats, one, 
two, three [touches the top, left, and bottom edges]. And then the same 
thing for this table [points to the last square]. So that’s six.

Teacher: OK, and then you said “two for each table in the middle”?

Khalil: Yeah, these two in the middle have two seats, one on the top and one on 
the bottom. So two twos is four more seats. So that’s ten total.

Teacher: I see now. Can I write your strategy like this? [Writes 3 + 3 + 2 + 2.] Does 
that match your thinking?

Khalil: Yeah.

Teacher: OK, now I want you to imagine that you have ten square tables in a row. 
I want you to figure out how many people could sit there, but I want you 
to do it in three different ways. First, I want you to figure it out using 
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Ashanti’s strategy. Then I want you to try Khalil’s strategy. Then if you 
want you can come up with your own way.

 [The students work independently on this for a few minutes.]

Teacher: OK, can someone besides Ashanti tell me how she would solve this 
problem?

Carlos: I can. First she would say there are ten seats all along the top. Then she 
would say there are ten more seats along the bottom. Then she would add 
two more seats for the ends. So that would be ten plus ten is twenty, plus 
two more is twenty-two.

Teacher: What do you think, Ashanti, does that fit your strategy from before?

Ashanti: Yeah, that’s how I did it.

Teacher: OK, so if I write it the same way as before, so it kind of matches this 
[points to 4 + 4 + 2 written earlier], but for this new problem, what would I 
write?

Juanita: It would be ten plus ten plus two.

Teacher: [Writes 10 + 10 + 2 next to 4 + 4 + 2.] OK, and what does this first ten 
mean?

Juanita: Those are all the seats along the top.

Teacher: OK, and how do you know to write a ten there? Did you count each seat 
by ones?

Juanita: Well, you could count them by ones, but you can also just know.

Teacher: How would you just know? Anyone can answer, how would you just 
know that there are ten seats along the top without counting by ones?

Jaylen: Every table has one seat on top, and there are ten tables, so you don’t have 
to count, you just can figure out that it would be ten.

 [The conversation continues, and the teacher then facilitates a similar con-
versation about Khalil’s strategy. The teacher then asks the class to repeat 
this activity for a row of one hundred tables, conducts another class discus-
sion of the strategies, and then finally asks the whole class to consider if 
there were “n” tables pushed together.]

Teacher: OK, so we have figured this out for ten tables and one hundred tables. 
What if we knew there were a lot of tables in a row, but we did not know 
exactly how many? When mathematicians have a problem like that, they 
use a letter to stand for the number of tables. So instead of saying there 
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are ten tables or one hundred tables, they would say, “we don’t know 
how many tables, so we will say there are n tables.” And this n can be 
any number of tables. So think about how Ashanti would figure out how 
many people could sit down. Talk to your partners about how Ashanti 
could do this problem.

 [After a brief discussion in partners, the teacher calls the class back 
together.]

Teacher: OK, any ideas? How could Ashanti use her strategy now? I know this is 
harder because we don’t actually know how many tables there are. David, 
would you be willing to share what you and Rosa were talking about?

David: Well, we said it might be n plus n plus two.

Teacher: Where did you get that idea from?

David: Well, when it was four, it was four plus four plus two, and then with ten it 
was ten plus ten plus two, and the same with one hundred. So we just said 
“n” instead of the number.

Teacher: OK, so, I can write this n + n + 2, is that what you’re saying?

David: Yeah, that’s what we wrote down.

Teacher: OK, so, and anyone can answer this question, can someone explain what 
this means? What does this first n mean?

Rosa: Well, we were saying that the n is like how many seats there are on the 
top. Just like in the other problems.

Teacher: But how do you know how many there will be? How do you know it will 
be n?

Rosa: Because it’s always the same as the number of tables.

 [The lesson continues with a transition to problems where the teacher tells 
the class the number of people and asks how many tables there must have 
been.]

Practice 2 essentially describes a three-step process: (1) decontextualizing problems by 
representing a problem context using mathematical symbols; (2) manipulating symbols, such 
as performing calculations or solving an algebraic equation; and (3) contextualizing problems 
by periodically connecting the mathematical symbols back to the problem context. The vi-
gnette above focuses primarily on the first and third steps. The teacher solicits strategies and 
then demonstrates how they can be represented symbolically. However, she continually draws 
the students’ attention to the meaning of the symbols in terms of the problem context (people 
sitting around a table). Thus the teacher is demonstrating how we can move back and forth be-
tween a problem context and a symbolic representation of that context.
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Traditional mathematics instruction frequently involves teaching algebraic and symbolic 
rules first, without a meaningful problem context, and then later having students apply them 
to problem situations. This vignette shows how taking the opposite approach allows students 
to build meaning for mathematical symbols out of the sense making they have engaged in 
with the problem context (people sitting at a table), thus grounding the mathematical symbols 
in the students’ reasoning instead of emphasizing an abstract set of rules and procedures to 
memorize.

Middle and High School Vignette: Rate of Change

Understanding rate of change is important for understanding functions and graphs and lay-
ing a foundation for calculus. An important aspect of understanding functional relationships 
involves coming to think of how one quantity (treated as the dependent variable) varies based 
on a relationship with another quantity (treated as the independent variable). Rate of change 
involves understanding how the dependent variable changes in response to changes in the in-
dependent variable. Is it increasing, constant, or decreasing, and is the rate of change steady, 
speeding up, or slowing down? A focus on rate of change can begin even before algebra, as can 
be seen in van Dyke and Tomback’s (2005) article discussing how they collaborated to intro-
duce algebra first through “qualitative graphs (graphs without scale), then quantitative graphs 
(graphs with scale)” (p. 237). The examples that follow are re-created from van Dyke and 
Tomback’s work.

An early task can involve asking students to match graphs to a situation that is described 
in words, such as in figure 2.2. Initial problems such as these allow students to begin focusing 
on the relationship between quantities and when the dependent variable is increasing or de-
creasing as the independent variable increases. Later problems can provide a greater focus on 
the intensity of the rate of change, for instance considering when something is speeding up or 
slowing down as seen in figure 2.3.
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Find the graph that best matches this sentence.
The value of the land �rst decreased, then began to increase.

For the other graphs, write a sentence to describe what is happening.

Janet, Gail, and Susan all walked away from the railroad station. 
Janet walked at a steady pace, Gail speeded up as she walked,
and Susan slowed down. 
Decide which graph pictures each girl’s walk. Explain your reasoning.

Fig. 2.2. Match a graph to a story  
(adapted from van Dyke and Tomback [2005, pp. 237–38])
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Find the graph that best matches this sentence.
The value of the land �rst decreased, then began to increase.

For the other graphs, write a sentence to describe what is happening.

Janet, Gail, and Susan all walked away from the railroad station. 
Janet walked at a steady pace, Gail speeded up as she walked,
and Susan slowed down. 
Decide which graph pictures each girl’s walk. Explain your reasoning.

Fig. 2.3. Speeding up and slowing down  
(re-created from van Dyke and Tomback [2005, p. 239])

Examples such as these are important for developing students’ understanding of relation-
ships between quantities and rate of change in particular. However, they also lay an important 
foundation for understanding calculus. Johnson (2012) provides an example of a student who 
developed such reasoning prior to taking calculus. Johnson found that rich understanding of 
rate of change involved the ability to systematically vary one variable, which acted as the in-
dependent variable (such as the side length of a square) and examine the change in the second 
variable (such as the area of the square). Importantly, as discussed in the examples above, the 
student could not only attend to the direction of change (was it increasing or decreasing) but 
to the intensity of this change (was it changing quickly or slowly, and was it a steady change or 
was it speeding up or slowing down).

One of the activities Johnson (2012) used was to create a square with the Geometer’s 
Sketchpad software (Jackiw, 2001) and then allow the student to drag a corner of the square. 
The software would display the side length, the area, and the perimeter of the square. Johnson 
also later gave a set of two tables: one showing side length versus perimeter and another show-
ing side length versus area. This activity allowed the student to explore how perimeter and area 
change in relationship to changes in side length. Two features of this problem that may help fo-
cus students’ attention on the intensity of the rate of change are (1) students can examine when 
the area is growing faster than the perimeter and vice versa, and (2) students can investigate if 
the area changes at a steady rate or if it increases “faster and faster.”

A common theme that cuts across these examples from van Dyke and Tomback (2005) 
and Johnson (2012) is the clear emphasis on the relationships among the various quantities be-
fore turning attention to the specific numerical values. This echoes the point raised above that 
quantity is not number (Thompson 1993); quantitative reasoning is fundamentally about con-
sidering the relationships among quantities within the problem context.
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Resources
This resource provides a broad range of examples for incorporating algebraic reasoning into the 
elementary grades, including patterning activities and generalizing around simple story problems.

•	 Blanton,	M.	L.,	and	J.	J.	Kaput.		“Developing	Elementary	Teachers’	Algebra	Eyes	and	
Ears.” Teaching Children Mathematics 10, no. 2 (2003): 70–77.

These resources were drawn on heavily in the elementary-grades vignette above. They detail 
different forms of student thinking when making generalizations of patterns and the role of 
the teacher in accurately capturing students’ thinking.

•	 Bishop,	J.	W.,	A.	D. Otto, and C. A. Lubinski. “Promoting Algebraic Reasoning Using 
Students’ Thinking.” Mathematics Teaching in the Middle School 6, no. 9 (2001): 
508–14.

•	 Lannin,	J.	K.	“Developing	Algebraic	Reasoning	through	Generalization.”	Mathematics 
Teaching in the Middle School 8, no. 7 (2003): 342–48.

These resources connect to the secondary examples above in focusing on connecting qualita-
tive graphs (graphs without scale) to real world contexts.

•	 Maus,	J.	“Every	Story	Tells	a	Picture.”	Mathematics Teaching in the Middle School 10, 
no. 8 (2005): 375–79.

•	 van	Dyke,	F.,	and	J.	Tomback.	“Collaborating	to	Introduce	Algebra.”	Mathematics 
Teaching in the Middle School 10, no. 5 (2005): 236–42.

This resource provides a clear emphasis on the relationship between algebraic symbols and 
problem contexts (the decontextualizing and contextualizing emphasized in practice 2). It in-
cludes problem contexts such as painting a room, identifying the number of dots in a star pat-
tern, and summing consecutive numbers.

•	 Philipp,	R.	A.,	and	B.	P.	Schappelle.	“Algebra	as	Generalized	Arithmetic:	Starting	with	
the Known for a Change.” The Mathematics Teacher 92, no. 4 (1999): 310–16.
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